Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries

被引:5
|
作者
Ji Chen
Xiulin Fan
Qin Li
Hongbin Yang
M. Reza Khoshi
Yaobin Xu
Sooyeon Hwang
Long Chen
Xiao Ji
Chongyin Yang
Huixin He
Chongmin Wang
Eric Garfunkel
Dong Su
Oleg Borodin
Chunsheng Wang
机构
[1] University of Maryland College Park,Department of Chemical and Biomolecular Engineering
[2] The State University of New Jersey,Department of Chemistry, Rutgers
[3] The State University of New Jersey,Department of Chemistry, Rutgers
[4] Pacific Northwest National Laboratory,Environmental Molecular Sciences Laboratory
[5] Brookhaven National Laboratory,Center for Functional Nanomaterials
[6] US Army Combat Capabilities Development Command Army Research Laboratory,Battery Science Branch, Sensor and Electron Devices Directorate
[7] University of Maryland College Park,Department of Chemistry and Biochemistry
来源
Nature Energy | 2020年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lithium batteries with Si, Al or Bi microsized (>10 µm) particle anodes promise a high capacity, ease of production, low cost and low environmental impact, yet they suffer from fast degradation and a low Coulombic efficiency. Here we demonstrate that a rationally designed electrolyte (2.0 M LiPF6 in 1:1 v/v mixture of tetrahydrofuran and 2-methyltetrahydrofuran) enables 100 cycles of full cells that contain microsized Si, Al and Bi anodes with commercial LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes. Alloy anodes with areal capacities of more than 2.5 mAh cm−2 achieved >300 cycles with a high initial Coulombic efficiency of >90% and average Coulombic efficiency of >99.9%. These improvements are facilitated by the formation of a high-modulus LiF–organic bilayer interphase, in which LiF possesses a high interfacial energy with the alloy anode to accommodate plastic deformation of the lithiated alloy during cycling. This work provides a simple yet practical solution to current battery technology without any binder modification or special fabrication methods.
引用
收藏
页码:386 / 397
页数:11
相关论文
共 50 条
  • [31] Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries
    Guo, Xun
    Zhang, Shaoce
    Hong, Hu
    Wang, Shixun
    Zhu, Jiaxiong
    Zhi, Chunyi
    ISCIENCE, 2025, 28 (02)
  • [32] Stable LiF-Rich Electrode-Electrolyte Interface toward High-Voltage and High-Energy-Density Lithium Metal Solid Batteries
    Yang, Tianqi
    Zhang, Wenkui
    Lou, Jiatao
    Lu, Huanming
    Xia, Yang
    Huang, Hui
    Gan, Yongping
    He, Xinping
    Wang, Yao
    Tao, Xinyong
    Xia, Xinhui
    Zhang, Jun
    SMALL, 2023, 19 (24)
  • [33] Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries
    Zhao, Changyong
    Wu, Hanyan
    Gao, Xuejie
    Cheng, Chen
    Cai, Shuiping
    Yang, Xiaofei
    Sun, Runcang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 1084 - 1094
  • [34] Localized high concentration polymer electrolyte enabling room temperature solid-state lithium metal batteries with stable LiF-rich interphases
    Lu, Junjie
    Sheng, Bifu
    Chen, Minfeng
    Xu, Min
    Zhang, Yiyi
    Zhao, Sheng
    Zhou, Qingqing
    Li, Chuyang
    Wang, Bin
    Liu, Jingjing
    Chen, Jizhang
    Lou, Zhichao
    Han, Xiang
    ENERGY STORAGE MATERIALS, 2024, 71
  • [35] An ethyl bromofluoroacetate redox mediator enables a robust LiF-rich solid electrolyte interphase for advanced lithium-oxygen batteries
    Rong, Yuan-Jia
    Zhang, Xiao-Ping
    Li, Chu-Yue
    Wang, Qian-Yan
    Wu, Min-Sheng
    Chen, Wei-Rong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (32) : 17257 - 17262
  • [36] Use of a solid polymer/ceramic electrolyte coating to promote uniform Li flux and a LiF-rich interphase for lithium metal batteries
    Li, Xin
    Lin, Yong
    Fan, Yunyan
    Lu, Junjie
    Lin, Shaojing
    Chen, Xian
    Ji, Jianbing
    Li, Wenxiang
    Zhang, Ling
    Han, Xiang
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (06) : 2365 - 2371
  • [37] Building Elastic Solid Electrolyte Interphases for Stabilizing Microsized Antimony Anodes in Potassium Ion Batteries
    Du, Xiaoqiong
    Gao, Yao
    Zhang, Biao
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (26)
  • [38] Constructing a magnesium fluoride-rich solid electrolyte interface for high-performance lithium metal anodes
    Zhang, Wen-Wei
    Tian, Ya-Wen
    Gao, Qian-Yu
    Zeng, Zhuo-Hang
    Mohamed, Hemdan S. H.
    Chen, Li-Hua
    Li, Yu
    Su, Bao-Lian
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (13): : 3927 - 3936
  • [39] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Linfeng Peng
    Chuang Yu
    Ziqi Zhang
    Ruonan Xu
    Mengjun Sun
    Long Zhang
    Shijie Cheng
    Jia Xie
    Energy & Environmental Materials , 2023, (02) : 114 - 121
  • [40] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Linfeng Peng
    Chuang Yu
    Ziqi Zhang
    Ruonan Xu
    Mengjun Sun
    Long Zhang
    Shijie Cheng
    Jia Xie
    Energy & Environmental Materials, 2023, 6 (02) : 114 - 121