Dual Boas-type theorems and weighted integrability results for second Hankel–Clifford transform

被引:0
|
作者
Sergey Volosivets
机构
[1] Saratov State University,Department of Mechanics and Mathematics
关键词
Hankel–Clifford transform; Hankel–Clifford translation; Generalized Lipschitz spaces; Boas type theorem; Weighted integrability; Primary 44A15; Secondary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
For a measurable on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+$$\end{document} function from Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} space with a power weight xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^\mu $$\end{document} we consider the Hankel–Clifford transform h2,μ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2,\mu }(f)$$\end{document}. We proved a dual Boas type result about necessary and sufficient conditions for h2,μ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2,\mu }(f)$$\end{document} to belong to the generalized uniform Lipschitz classes connected with the Hankel–Clifford translation. We obtain sufficient conditions for the weighted integrability of Hankel–Clifford transforms of functions from generalized integral Lipschitz classes. These conditions are analogues and generalization of well known Titchmarsh conditions for classical Fourier transform.
引用
收藏
相关论文
共 35 条