Dual Boas-type theorems and weighted integrability results for second Hankel–Clifford transform

被引:0
|
作者
Sergey Volosivets
机构
[1] Saratov State University,Department of Mechanics and Mathematics
关键词
Hankel–Clifford transform; Hankel–Clifford translation; Generalized Lipschitz spaces; Boas type theorem; Weighted integrability; Primary 44A15; Secondary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
For a measurable on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+$$\end{document} function from Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} space with a power weight xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^\mu $$\end{document} we consider the Hankel–Clifford transform h2,μ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2,\mu }(f)$$\end{document}. We proved a dual Boas type result about necessary and sufficient conditions for h2,μ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2,\mu }(f)$$\end{document} to belong to the generalized uniform Lipschitz classes connected with the Hankel–Clifford translation. We obtain sufficient conditions for the weighted integrability of Hankel–Clifford transforms of functions from generalized integral Lipschitz classes. These conditions are analogues and generalization of well known Titchmarsh conditions for classical Fourier transform.
引用
收藏
相关论文
共 35 条
  • [1] Dual Boas-type theorems and weighted integrability results for second Hankel-Clifford transform
    Volosivets, Sergey
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (03)
  • [2] Boas-type theorems for the second Hankel–Clifford transform
    Mahfoud A.
    El Hamma M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (2) : 273 - 283
  • [3] Dual Boas type and weighted integrability results for deformed Hankel transformDual Boas type and weighted integrability results...S. Volosivets
    Sergey Volosivets
    Rendiconti del Circolo Matematico di Palermo Series 2, 2025, 74 (1):
  • [4] Boas-type theorems for the Bessel transform
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Berkak, El Mehdi
    Daher, Radouan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [5] Boas-type theorems for the Bessel transform
    El Mehdi Loualid
    Abdelghani Elgargati
    El Mehdi Berkak
    Radouan Daher
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [6] WEIGHTED INTEGRABILITY RESULTS FOR FIRST HANKEL-CLIFFORD TRANSFORM
    Volosivets, S. S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2023, 12 (02): : 107 - 117
  • [7] Boas-type results for Mellin transform
    Volosivets, S. S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (03) : 165 - 174
  • [8] Boas-type theorems for the free metaplectic transform
    Abdelghani El Gargati
    Imane Berkak
    El Mehdi Loualid
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1491 - 1507
  • [9] Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
    Mannai, Mehrez
    Negzaoui, Selma
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024,
  • [10] Boas-type theorems for the q-Bessel Fourier transform
    El Mehdi Berkak
    El Mehdi Loualid
    Radouan Daher
    Analysis and Mathematical Physics, 2021, 11