Obstacle Problems for Integro-Differential Operators with Partially Vanishing Kernels

被引:0
|
作者
Shuai Qi
Lin Tang
机构
[1] Ministry of Education,School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems
[2] Peking University,School of Mathematical Sciences
关键词
Nonlocal normalized ; -Laplacian; Obstacle problem; Free boundary; 35J10; 42B20; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the obstacle problem of some convex operators, which is related to normalized p-Laplacian Δps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p^s$$\end{document}. We prove that the graph of the regular free boundary is C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document} and the solution is C1,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,s}$$\end{document} near these points. Moreover, we show that the set of regular free boundary points is relatively open.
引用
收藏
相关论文
共 50 条