Let q(G) denote the signless Laplacian spectral radius of a graph G. In this paper, we first give an upper bound on q(G) of a connected graph G with fixed size m≥3k(k∈Z+)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\ge 3k(k \in {\mathbb {Z}}^{+})$$\end{document} and maximum degree Δ≤m-k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \le m-k$$\end{document}. For two connected graphs G1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_1$$\end{document} and G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_2$$\end{document} with size m≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\ge 4$$\end{document}, employing this upper bound, we prove that q(G1)>q(G2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q(G_1)>q(G_2)$$\end{document} if Δ(G1)>Δ(G2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta (G_1)>\Delta (G_2)$$\end{document} and Δ(G1)≥2m3+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta (G_1)\ge \frac{2m}{3}+1$$\end{document}. As an application, we determine the first ⌊d/2⌋\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lfloor d/2\rfloor $$\end{document} graphs with the largest signless Laplacian spectral radius among all graphs with fixed size and diameter.
机构:
School of Mathematics and Statistics, Qinghai Normal University
School of Mathematics and Statistics, Yancheng Teachers UniversitySchool of Mathematics and Statistics, Qinghai Normal University
Nannan LIU
Shuguang GUO
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics and Statistics, Yancheng Teachers UniversitySchool of Mathematics and Statistics, Qinghai Normal University
机构:
South China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R ChinaSouth China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
Wei, Fi-Yi
Liu, Muhuo
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R ChinaSouth China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Yu, Guanglong
Wu, Yarong
论文数: 0引用数: 0
h-index: 0
机构:
Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
Shanghai Maritime Univ, SMU Coll Art & Sci, Shanghai 200135, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Wu, Yarong
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
机构:
South China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R ChinaSouth China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
Liu, Muhuo
Liu, Bolian
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
Liu, Bolian
Cheng, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Foreign Studies, Sch Finance, Dept Appl Math, Guangzhou, Guangdong, Peoples R ChinaSouth China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
机构:
Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R ChinaZhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R China
Li, Jianxi
Guo, Ji-Ming
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Dept Appl Math, Dongying, Shandong, Peoples R ChinaZhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R China
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Yu, Guanglong
Wu, Yarong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Shanghai Maritime Univ, SMU Coll Art & Sci, Shanghai 200135, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Wu, Yarong
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
机构:
Department of Applied Mathematics,School of Science,Northwestern Polytechnical UniversityDepartment of Applied Mathematics,School of Science,Northwestern Polytechnical University