Ordering Graphs with Given Size by Their Signless Laplacian Spectral Radii

被引:0
|
作者
Rong Zhang
Shu-Guang Guo
机构
[1] Yancheng Teachers University,School of Mathematics and Statistics
关键词
Signless Laplacian spectral radius; Size; Upper bound; Ordering; Diameter; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let q(G) denote the signless Laplacian spectral radius of a graph G. In this paper, we first give an upper bound on q(G) of a connected graph G with fixed size m≥3k(k∈Z+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 3k(k \in {\mathbb {Z}}^{+})$$\end{document} and maximum degree Δ≤m-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \le m-k$$\end{document}. For two connected graphs G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document} with size m≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 4$$\end{document}, employing this upper bound, we prove that q(G1)>q(G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q(G_1)>q(G_2)$$\end{document} if Δ(G1)>Δ(G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G_1)>\Delta (G_2)$$\end{document} and Δ(G1)≥2m3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G_1)\ge \frac{2m}{3}+1$$\end{document}. As an application, we determine the first ⌊d/2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor d/2\rfloor $$\end{document} graphs with the largest signless Laplacian spectral radius among all graphs with fixed size and diameter.
引用
收藏
页码:2165 / 2174
页数:9
相关论文
共 50 条
  • [1] Ordering Graphs with Given Size by Their Signless Laplacian Spectral Radii
    Zhang, Rong
    Guo, Shu-Guang
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2165 - 2174
  • [2] A Note on the Signless Laplacian Spectral Ordering of Graphs with Given Size
    Nannan LIU
    Shuguang GUO
    [J]. Journal of Mathematical Research with Applications, 2024, 44 (03) : 304 - 312
  • [3] Ordering of the signless Laplacian spectral radii of unicyclic graphs
    Wei, Fi-Yi
    Liu, Muhuo
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 255 - 264
  • [4] Signless Laplacian spectral radii of graphs with given chromatic number
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 1813 - 1822
  • [5] Ordering (signless) Laplacian spectral radii with maximum degrees of graphs
    Liu, Muhuo
    Liu, Bolian
    Cheng, Bo
    [J]. DISCRETE MATHEMATICS, 2015, 338 (02) : 159 - 163
  • [6] The signless Laplacian spectral radii of modified graphs
    Li, Jianxi
    Guo, Ji-Ming
    [J]. MATHEMATICAL COMMUNICATIONS, 2013, 18 (01) : 67 - 73
  • [7] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [8] The Signless Laplacian Spectral Radii and Spread of Bicyclic Graphs
    Fengmei SUN
    Ligong WANG
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (02) : 127 - 136
  • [9] Laplacian and signless Laplacian spectral radii of graphs with fixed domination number
    Xing, Rundan
    Zhou, Bo
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (04) : 476 - 480
  • [10] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    [J]. UTILITAS MATHEMATICA, 2010, 83 : 265 - 276