Ordering Graphs with Given Size by Their Signless Laplacian Spectral Radii

被引:7
|
作者
Zhang, Rong [1 ]
Guo, Shu-Guang [1 ]
机构
[1] Yancheng Teachers Univ, Sch Math & Stat, Yancheng 224002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Size; Upper bound; Ordering; Diameter; PRESCRIBED NUMBER; 3; CONJECTURES; LOWER BOUNDS; EIGENVALUES;
D O I
10.1007/s40840-022-01312-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q(G) denote the signless Laplacian spectral radius of a graph G. In this paper, we first give an upper bound on q(G) of a connected graph G with fixed size m >= 3k(k is an element of Z(+)) and maximum degree Delta <= m - k. For two connected graphs G(1) and G(2) with size m >= 4, employing this upper bound, we prove that q(G(1)) > q(G(2)) if Delta(G(1)) > Delta(G(2)) and Delta(G(1)) >= 2m/3 + 1. As an application, we determine the first left perpendiculard/2right perpendicular graphs with the largest signless Laplacian spectral radius among all graphs with fixed size and diameter.
引用
收藏
页码:2165 / 2174
页数:10
相关论文
共 50 条
  • [1] Ordering Graphs with Given Size by Their Signless Laplacian Spectral Radii
    Rong Zhang
    Shu-Guang Guo
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2165 - 2174
  • [2] A Note on the Signless Laplacian Spectral Ordering of Graphs with Given Size
    Nannan LIU
    Shuguang GUO
    [J]. Journal of Mathematical Research with Applications, 2024, 44 (03) : 304 - 312
  • [3] Ordering of the signless Laplacian spectral radii of unicyclic graphs
    Wei, Fi-Yi
    Liu, Muhuo
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 255 - 264
  • [4] Signless Laplacian spectral radii of graphs with given chromatic number
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 1813 - 1822
  • [5] Ordering (signless) Laplacian spectral radii with maximum degrees of graphs
    Liu, Muhuo
    Liu, Bolian
    Cheng, Bo
    [J]. DISCRETE MATHEMATICS, 2015, 338 (02) : 159 - 163
  • [6] The signless Laplacian spectral radii of modified graphs
    Li, Jianxi
    Guo, Ji-Ming
    [J]. MATHEMATICAL COMMUNICATIONS, 2013, 18 (01) : 67 - 73
  • [7] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [8] The Signless Laplacian Spectral Radii and Spread of Bicyclic Graphs
    Fengmei SUN
    Ligong WANG
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (02) : 127 - 136
  • [9] Laplacian and signless Laplacian spectral radii of graphs with fixed domination number
    Xing, Rundan
    Zhou, Bo
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (04) : 476 - 480
  • [10] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    [J]. UTILITAS MATHEMATICA, 2010, 83 : 265 - 276