Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding

被引:0
|
作者
Li Ma
Melba M. Crawford
Jinwen Tian
机构
[1] Huazhong University of Science and Technology,State Key Laboratory for Multi
[2] Purdue University,spectral Information Processing Technologies
关键词
Hyperspectral images; Anomaly detection; Robust locally linear embedding (RLLE); Dimensionality reduction (DR); RX detector;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, anomaly detection in hyperspectral images is investigated using robust locally linear embedding (RLLE) for dimensionality reduction in conjunction with the RX anomaly detector. The new RX-RLLE method is implemented for large images by subdividing the original image and applying the RX-RLLE operations to each subset. Moreover, from the kernel view of LLE, it is demonstrated that the RX-RLLE is equivalent to introducing a locally linear embedding (LLE) kernel into the kernel RX (KRX) algorithm. Experimental results indicate that the RX-RLLE has good anomaly detection performance and that RLLE has superior performance to LLE and principal component analysis (PCA) for dimensionality reduction in the application of anomaly detection.
引用
收藏
页码:753 / 762
页数:9
相关论文
共 50 条
  • [31] Hyperspectral Anomaly Detection With Robust Graph Autoencoders
    Fan, Ganghui
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] INTRINSIC DIMENSIONALITY DETECTION CRITERION BASED ON LOCALLY LINEAR EMBEDDING
    Meng, Liang
    Breitkopf, Piotr
    [J]. COMPUTER SCIENCE-AGH, 2018, 19 (03): : 345 - 356
  • [33] Anomaly Detection and Target Recognition With Hyperspectral Images
    Lokman, Gurcan
    Yilmaz, Guray
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1019 - 1022
  • [34] A Tutorial Overview of Anomaly Detection in Hyperspectral Images
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2010, 25 (07) : 5 - 27
  • [35] Hybrid anomaly detection method for hyperspectral images
    Fatma Küçük
    [J]. Signal, Image and Video Processing, 2023, 17 : 2755 - 2761
  • [36] An Approach for Subpixel Anomaly Detection in Hyperspectral Images
    Khazai, Safa
    Safari, Abdolreza
    Mojaradi, Barat
    Homayouni, Saeid
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 769 - 778
  • [37] ISOLATION FOREST FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Zhang, Kunzhong
    Kang, Xudong
    Li, Shutao
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 437 - 440
  • [38] A new approach to anomaly detection in hyperspectral images
    Clare, P
    Bernhardt, M
    Oxford, W
    Murphy, S
    Godfree, P
    Wilkinson, V
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 17 - 28
  • [39] Hybrid anomaly detection method for hyperspectral images
    Kucuk, Fatma
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2755 - 2761
  • [40] UNSUPERVISED FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGES USING COMBINED LOW RANK REPRESENTATION AND LOCALLY LINEAR EMBEDDING
    Wang, Mengdi
    Yu, Jing
    Niu, Lijuan
    Sun, Weidong
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1428 - 1431