Maximum-Likelihood Fits to Histograms for Improved Parameter Estimation

被引:0
|
作者
J. W. Fowler
机构
[1] National Institute of Standards and Technology,
来源
关键词
Energy resolution; Histogram fitting; Maximum likelihood;
D O I
暂无
中图分类号
学科分类号
摘要
Straightforward methods for adapting the familiar χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2$$\end{document} statistic to histograms of discrete events and other Poisson distributed data generally yield biased estimates of the parameters of a model. The bias can be important even when the total number of events is large. For the case of estimating a microcalorimeter’s energy resolution at 6 keV from the observed shape of the Mn Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} fluorescence spectrum, a poor choice of χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2$$\end{document} can lead to biases of at least 10 % in the estimated resolution when up to thousands of photons are observed. The best remedy is a Poisson maximum-likelihood fit, through a simple modification of the standard Levenberg-Marquardt algorithm for χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2$$\end{document} minimization. Where the modification is not possible, another approach allows iterative approximation of the maximum-likelihood fit.
引用
收藏
页码:414 / 420
页数:6
相关论文
共 50 条
  • [21] GooFit: A library for massively parallelising maximum-likelihood fits
    Andreassen, R.
    Meadows, B. T.
    de Silva, M.
    Sokoloff, M. D.
    Tomko, K.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [22] Improved maximum-likelihood estimation in a regression model with general parametrization
    Lemonte, Artur J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (08) : 1027 - 1037
  • [23] ON MAXIMUM-LIKELIHOOD AND RESTRICTED MAXIMUM-LIKELIHOOD APPROACHES TO ESTIMATION OF VARIANCE-COMPONENTS
    BROWN, KG
    BURGESS, MA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1984, 19 (01) : 59 - 77
  • [25] Maximum-likelihood parameter estimation in terahertz time-domain spectroscopy
    Mohtashemi, Laleh
    Westlund, Paul
    Sahota, Derek G.
    Lea, Graham B.
    Bushfield, Ian
    Mousavi, Payam
    Dodge, J. Steven
    OPTICS EXPRESS, 2021, 29 (04) : 4912 - 4926
  • [26] Astronomical image restoration based on maximum-likelihood incorporated parameter estimation
    Geng, Ze-Xun
    Wei, Xiao-Feng
    Shen, Chen
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2013, 21 (11): : 2943 - 2950
  • [27] Maximum-likelihood parameter estimation for image ringing-artifact removal
    Yang, S
    Hu, YH
    Nguyen, TQ
    Tull, DL
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2001, 11 (08) : 963 - 973
  • [28] Maximum-Likelihood Event Parameter Estimation from Digital Waveform Capture
    Momsen, Neil C.
    Richards, Garrett
    Kupinski, Matthew A.
    Barrett, Harrison H.
    Furenlid, Lars R.
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [29] Maximum-likelihood Detection of Impulsive Noise Support for Channel Parameter Estimation
    Mestre, Xavier
    Payaro, Miguel
    Shrestha, Deep
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [30] Least squares and maximum-likelihood TFAR parameter estimation for nonstationary processes
    Jachan, Michael
    Matz, Gerald
    Hlawatsch, Franz
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 2943 - 2946