Theory of truth degrees of formulas in Łukasiewiczn-valued propositional logic and a limit theorem

被引:0
|
作者
Bijing Li
Guojun Wang
机构
[1] Shaanxi Normal University,Institute of Mathematics
[2] Xi’an Jiaotong University,Research Center for Science
关键词
Łukasiewicz; -valued propositional logic; truth degree; limit theorem; integrated truth degree;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of truth degrees of formulas in Łukasiewiczn-valued propositional logicLn is proposed. A limit theorem is obtained, which says that the truth functionτn induced by truth degrees converges to the integrated truth functionτ whenn converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Łukasiewicz logic and the continuous valued Łukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.
引用
收藏
页码:727 / 736
页数:9
相关论文
共 50 条
  • [31] Syntax theory of finite lattice-valued propositional logic
    XiaoDong Pan
    Dan Meng
    Yang Xu
    Science China Information Sciences, 2013, 56 : 1 - 12
  • [32] Semantic theory of finite lattice-valued propositional logic
    Pan XiaoDong
    Xu Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (10) : 2022 - 2031
  • [33] On the infinite-valued Lukasiewicz logic that preserves degrees of truth
    Font, Josep Maria
    Gil, Angel J.
    Torrens, Antoni
    Verdu, Ventura
    ARCHIVE FOR MATHEMATICAL LOGIC, 2006, 45 (07) : 839 - 868
  • [34] On the infinite-valued Łukasiewicz logic that preserves degrees of truth
    Josep Maria Font
    Àngel J. Gil
    Antoni Torrens
    Ventura Verdú
    Archive for Mathematical Logic, 2006, 45 : 839 - 868
  • [35] Syntax theory of finite lattice-valued propositional logic
    Pan XiaoDong
    Meng Dan
    Xu Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (08) : 1 - 12
  • [36] Semantic theory of finite lattice-valued propositional logic
    XiaoDong Pan
    Yang Xu
    Science China Information Sciences, 2010, 53 : 2022 - 2031
  • [37] A unified algorithm for finding -IESFs in linguistic truth-valued lattice-valued propositional logic
    He, Xingxing
    Xu, Yang
    Liu, Jun
    Chen, Shuwei
    SOFT COMPUTING, 2014, 18 (11) : 2135 - 2147
  • [38] The Interval-Valued Truth Degree Theory of the Modal Formulas
    Li, Bi-jing
    Wang, Guo-jun
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2010, VOL 2, 2010, 82 : 207 - +
  • [39] Linguistic truth-valued lattice value propositional logic system lP(X)
    Lai, Jiajun
    Xu, Kaijun
    Xu, Yang
    Zeng, Zhaoyou
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [40] A kind of resolution method of linguistic truth-valued propositional logic based on LIA
    Zou, Li
    Li, Jinglong
    Xu, Kaijun
    Xu, Yang
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 32 - +