Approximation methods for solving fractional optimal control problems

被引:0
|
作者
Samaneh Soradi Zeid
Sohrab Effati
Ali Vahidian Kamyad
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics, Faculty of Mathematical Sciences
来源
关键词
Fractional optimal control problem; Fractional differential equation; Fractional derivative; Fractional two-point boundary value problem; Numerical approximation; 49M05; 49M25; 65K99;
D O I
暂无
中图分类号
学科分类号
摘要
In this review paper, approximation methods for the free final time of fractional optimal control problems (FOCPs) are displayed. The considered problems mainly include the fractional differential equations (FDEs) with fractional derivatives (FDs). In this way, the considered tools and techniques mainly include the necessary optimal conditions in the form of two-point boundary value (TPBV) problem of fractional order. The Legendre operational, Ritz method and the Jacobi, Bernoulli and Legendre polynomials are extended as numerical methods for FOCPs accordingly. At the same time, the techniques for improving the accuracy and computation and storage are also introduced.
引用
收藏
页码:158 / 182
页数:24
相关论文
共 50 条
  • [31] AN ACCURATE NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS
    Bhrawy, A. H.
    Doha, E. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    Abdelkawy, M. A.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (01): : 47 - 54
  • [32] APPROXIMATION OF FRACTIONAL RESOLVENTS AND APPLICATIONS TO TIME OPTIMAL CONTROL PROBLEMS
    Zhu, Shouguo
    Li, Gang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 649 - 666
  • [33] Numerical methods for solving applied optimal control problems
    A. Yu. Gornov
    A. I. Tyatyushkin
    E. A. Finkelstein
    Computational Mathematics and Mathematical Physics, 2013, 53 : 1825 - 1838
  • [34] Pseudospectral knotting methods for solving optimal control problems
    Ross, IM
    Fahroo, F
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2004, 27 (03) : 397 - 405
  • [35] Numerical methods for solving terminal optimal control problems
    Gornov, A. Yu.
    Tyatyushkin, A. I.
    Finkelstein, E. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (02) : 221 - 234
  • [37] NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL FOR STEFAN PROBLEMS
    Nekrasov, S. A.
    Volkov, V. S.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (02): : 87 - 100
  • [38] Numerical methods for solving applied optimal control problems
    Gornov, A. Yu.
    Tyatyushkin, A. I.
    Finkelstein, E. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (12) : 1825 - 1838
  • [39] Numerical methods for solving terminal optimal control problems
    A. Yu. Gornov
    A. I. Tyatyushkin
    E. A. Finkelstein
    Computational Mathematics and Mathematical Physics, 2016, 56 : 221 - 234
  • [40] Notes on Numerical Methods for Solving Optimal Control Problems
    Biral, Francesco
    Bertolazzi, Enrico
    Bosetti, Paolo
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2016, 5 (02) : 154 - 166