Instabilities in a Two-Dimensional Combustion Model with Free Boundary

被引:0
|
作者
Claude-Michel Brauner
Alessandra Lunardi
机构
[1] Mathématiques Appliquées de Bordeaux¶Université Bordeaux I¶33405 Talence cedex,
[2] France¶e-mail: brauner@math.u-bordeaux.fr,undefined
[3] Dipartimento di Matematica¶Università di Parma,undefined
[4] ¶Via D'Azeglio 85/A,undefined
[5] 43100 Parma,undefined
[6] Italy¶e-mail: lunardi@prmat.math.unipr.it,undefined
关键词
Combustion; Dynamical System; Banach Space; Free Boundary; Wave Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We prove instability of the planar travelling wave solution in a two-dimensional free boundary problem modelling the propagation of near- equidiffusional premixed flames in the whole plane. We reduce the problem to a fixed boundary fully nonlinear parabolic system. The spectrum of the linearized operator contains an interval [0,ωc], ωc > 0, so we cannot construct backward solutions. We use an argument about stability of dynamical systems in Banach spaces in order to prove pointwise instability of the moving front.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 50 条
  • [41] On the two-phase free boundary problem for two-dimensional water waves
    Tatsuo Iguchi
    Naoto Tanaka
    Atusi Tani
    Mathematische Annalen, 1997, 309 : 199 - 223
  • [42] Two-dimensional electron-magnetohydrodynamic instabilities
    Califano, F
    Prandi, R
    Pegoraro, F
    Bulanov, SV
    PHYSICS OF PLASMAS, 1999, 6 (06) : 2332 - 2339
  • [43] INSTABILITIES OF TWO-DIMENSIONAL PLASMA-WAVES
    KRASHENINNIKOV, MV
    CHAPLIK, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1980, 79 (02): : 555 - 560
  • [44] Large scale instabilities in two-dimensional magnetohydrodynamics
    Boffetta, G.
    Celani, A.
    Prandi, R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4329 - 4335
  • [45] Large scale instabilities in two-dimensional magnetohydrodynamics
    Boffetta, G
    Celani, A
    Prandi, R
    PHYSICAL REVIEW E, 2000, 61 (04): : 4329 - 4335
  • [46] Inverse Problem for a Two-Dimensional Diffusion Equation in a Domain with Free Boundary
    M. I. Ivanchov
    N. V. Pabyrivs’ka
    Ukrainian Mathematical Journal, 2013, 65 : 1019 - 1031
  • [47] Strongly Φ-like functions of order α in two-dimensional free boundary problems
    Fericean, Denisa
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (15) : 7856 - 7863
  • [48] On the two-dimensional Navier-Stokes equations with the free boundary condition
    Indiana Univ, Bloomington, United States
    Appl Math Optim, 1 (1-19):
  • [49] Inverse Problem for a Two-Dimensional Diffusion Equation in a Domain with Free Boundary
    Ivanchov, M. I.
    Pabyrivs'ka, N. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (07) : 1019 - 1031
  • [50] RECOVERING THE TIMEWISE REACTION COEFFICIENT FOR A TWO-DIMENSIONAL FREE BOUNDARY PROBLEM
    Huntul, M. J.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2019, 7 (04): : 66 - 85