A novel fused convolutional neural network for biomedical image classification

被引:0
|
作者
Shuchao Pang
Anan Du
Mehmet A. Orgun
Zhezhou Yu
机构
[1] Jilin University,Department of Computational Intelligence, College of Computer Science and Technology
[2] Macquarie University,Department of Computing
[3] China Mobile (HangZhou) Information Technology Co.,undefined
[4] Ltd,undefined
关键词
Biomedical image classification; Convolutional neural networks; Deep learning; Deep feature; Shallow feature;
D O I
暂无
中图分类号
学科分类号
摘要
With the advent of biomedical imaging technology, the number of captured and stored biomedical images is rapidly increasing day by day in hospitals, imaging laboratories and biomedical institutions. Therefore, more robust biomedical image analysis technology is needed to meet the requirement of the diagnosis and classification of various kinds of diseases using biomedical images. However, the current biomedical image classification methods and general non-biomedical image classifiers cannot extract more compact biomedical image features or capture the tiny differences between similar images with different types of diseases from the same category. In this paper, we propose a novel fused convolutional neural network to develop a more accurate and highly efficient classifier for biomedical images, which combines shallow layer features and deep layer features from the proposed deep neural network architecture. In the analysis, it was observed that the shallow layers provided more detailed local features, which could distinguish different diseases in the same category, while the deep layers could convey more high-level semantic information used to classify the diseases among the various categories. A detailed comparison of our approach with traditional classification algorithms and popular deep classifiers across several public biomedical image datasets showed the superior performance of our proposed method for biomedical image classification. In addition, we also evaluated the performance of our method in modality classification of medical images using the ImageCLEFmed dataset.
引用
下载
收藏
页码:107 / 121
页数:14
相关论文
共 50 条
  • [21] Gastrointestinal Image Classification based on Convolutional Neural Network
    Wang, Shuo
    Gao, Pengfei
    Peng, Hui
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 42 - 48
  • [22] A noise robust convolutional neural network for image classification
    Momeny, Mohammad
    Latif, Ali Mohammad
    Sarram, Mehdi Agha
    Sheikhpour, Razieh
    Zhang, Yu Dong
    RESULTS IN ENGINEERING, 2021, 10
  • [23] Applying Improved Convolutional Neural Network in Image Classification
    Hu, Zhen-tao
    Zhou, Lin
    Jin, Bing
    Liu, Hai-jiang
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (01): : 133 - 141
  • [24] Advancements in Image Classification using Convolutional Neural Network
    Sultana, Farhana
    Sufian, Abu
    Dutta, Paramartha
    2018 FOURTH IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2018, : 122 - 129
  • [25] Applying Improved Convolutional Neural Network in Image Classification
    Zhen-tao Hu
    Lin Zhou
    Bing Jin
    Hai-jiang Liu
    Mobile Networks and Applications, 2020, 25 : 133 - 141
  • [27] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [28] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)
  • [29] In Embedded Systems Image Classification with Convolutional Neural Network
    Calik, Rasim Caner
    Demirci, M. Fatih
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [30] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48