Systematic discovery of conservation states for single-nucleotide annotation of the human genome

被引:0
|
作者
Adriana Arneson
Jason Ernst
机构
[1] University of California,Bioinformatics Interdepartmental Program
[2] Los Angeles,Department of Biological Chemistry
[3] University of California,Computer Science Department
[4] Los Angeles,Jonsson Comprehensive Cancer Center
[5] Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California,Molecular Biology Institute
[6] Los Angeles,undefined
[7] University of California,undefined
[8] Los Angeles,undefined
[9] University of California,undefined
[10] Los Angeles,undefined
[11] University of California,undefined
[12] Los Angeles,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Comparative genomics sequence data is an important source of information for interpreting genomes. Genome-wide annotations based on this data have largely focused on univariate scores or binary elements of evolutionary constraint. Here we present a complementary whole genome annotation approach, ConsHMM, which applies a multivariate hidden Markov model to learn de novo ‘conservation states’ based on the combinatorial and spatial patterns of which species align to and match a reference genome in a multiple species DNA sequence alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate the human genome at single nucleotide resolution into 100 conservation states. These states have distinct enrichments for other genomic information including gene annotations, chromatin states, repeat families, and bases prioritized by various variant prioritization scores. Constrained elements have distinct heritability partitioning enrichments depending on their conservation state assignment. ConsHMM conservation states are a resource for analyzing genomes and genetic variants.
引用
收藏
相关论文
共 50 条
  • [1] Systematic discovery of conservation states for single-nucleotide annotation of the human genome
    Arneson, Adriana
    Ernst, Jason
    [J]. COMMUNICATIONS BIOLOGY, 2019, 2 (1)
  • [2] Single-nucleotide conservation state annotation of the SARS-CoV-2 genome
    Soo Bin Kwon
    Jason Ernst
    [J]. Communications Biology, 4
  • [3] Single-nucleotide conservation state annotation of the SARS-CoV-2 genome
    Kwon, Soo Bin
    Ernst, Jason
    [J]. COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [4] Discovery and characterization of chromatin states for systematic annotation of the human genome
    Ernst, Jason
    Kellis, Manolis
    [J]. NATURE BIOTECHNOLOGY, 2010, 28 (08) : 817 - U94
  • [5] Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome
    Ernst, Jason
    Kellis, Manolis
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 53 - 53
  • [6] Discovery and characterization of chromatin states for systematic annotation of the human genome
    Jason Ernst
    Manolis Kellis
    [J]. Nature Biotechnology, 2010, 28 : 817 - 825
  • [7] StructMAn: annotation of single-nucleotide polymorphisms in the structural context
    Gress, Alexander
    Ramensky, Vasily
    Buech, Joachim
    Keller, Andreas
    Kalinina, Olga V.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W463 - W468
  • [8] Efficient discovery of single-nucleotide polymorphisms in coding regions of human genes
    Hu G.
    Modrek B.
    Riise Stensland H.M.F.
    Saarela J.
    Pajukanta P.
    Kustanovich V.
    Peltonen L.
    Nelson S.F.
    Lee C.
    [J]. The Pharmacogenomics Journal, 2002, 2 (4) : 236 - 242
  • [9] The discovery of single-nucleotide polymorphisms - and inferences about human demographic history
    Wakeley, J
    Nielsen, R
    Liu-Cordero, SN
    Ardlie, K
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (06) : 1332 - 1347
  • [10] Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome
    Schulze, TG
    Zhang, K
    Chen, YS
    Akula, N
    Sun, FZ
    McMahon, FJ
    [J]. HUMAN MOLECULAR GENETICS, 2004, 13 (03) : 335 - 342