Experiments on phosphate–silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits

被引:0
|
作者
Haroldo L. Lledo
H. Richard Naslund
David M. Jenkins
机构
[1] Universidad Católica de Temuco,Departamento de Obras Civiles y Geología
[2] Binghamton University,Department of Geological Sciences and Environmental Studies
关键词
Magnetite; Apatite; Immiscible; Phosphorus; Kiruna; Iron;
D O I
暂无
中图分类号
学科分类号
摘要
The formation of phosphorus–iron oxide (P–Fe) immiscible melts and their possible connection to the genesis of Kiruna-type and Nelsonite deposits was experimentally investigated by adding phosphoric acid (H3PO4), water, and sulfur, to andesite at 100–450 MPa, 500–900 °C, at the NiNiO and magnetite-hematite fO2 buffers using internally heated gas vessels. The addition of up to 8.02 wt% of H3PO4 to the andesite causes crystallization of apatite. At higher concentrations of H3PO4 whitlockite crystallizes, and at concentrations above ~ 11.4% H3PO4 (at 800 °C, 385 MPa) an immiscible P–Fe melt forms. Adding sulfur at low fO2 (NiNiO) causes an additional immiscible Fe–S melt to form. Increasing the fO2 to the hematite-magnetite buffer causes the sulfur-rich melt to shift in composition to a Ca–S–O melt, and the coexisting P-Fe melt to incorporate large amounts of SO4. Immiscible P-Fe melts can form at temperatures above 1100 °C down to 600 °C (at 400 MPa). Mass balance calculations show that some experimentally produced P-Fe rich immiscible liquids may result in mineral assemblages similar to those found at some Kiruna-type deposits, such as actinolite-rich dikes, and apatite-rich veins. Depending on the geological conditions and the composition the fractionation of a P-Fe melt may result in the formation of nelsonites at high pressures, high temperatures, and low fO2 or Kiruna-type deposits at lower temperatures and higher fO2.
引用
收藏
相关论文
共 50 条
  • [21] Thermodynamics of Liquid Immiscibility in Iron-Silicate Melt Systems: A Study of Nuclear Fallout Glass
    Moore, Emily E.
    Genda, Timothy P.
    Balboni, Enrica
    Dai, Zurong
    Perron, Aurelien
    Knight, Kimberly B.
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [22] SILICATE AND PHOSPHATE INFLUENCE ON KAOLIN-IRON OXIDE INTERACTIONS
    GOLDEN, DC
    DIXON, JB
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1985, 49 (06) : 1568 - 1576
  • [23] A fundamental role of carbonate–sulfate melts in the formation of iron oxide–apatite deposits
    Wyatt M. Bain
    Matthew Steele-MacInnis
    Kan Li
    Long Li
    Frank K. Mazdab
    Erin E. Marsh
    Nature Geoscience, 2020, 13 : 751 - 757
  • [24] Potential for sulfide-hosted by-products from the iron oxide-apatite deposits at Kiruna? A mineralogical perspective
    Krolop, Patrick
    Andersson, Ulf B.
    McFall, Katie
    Kalmbach, Jana
    Gilbricht, Sabine
    Seifert, Thomas
    17TH BIENNIAL SGA MEETING, 2023, VOL 3, 2023, : 60 - 63
  • [26] STUDIES IN LITHIUM OXIDE SYSTEMS .8. APPLICATION OF SILICATE LIQUID IMMISCIBILITY TO DEVELOPMENT OF OPAQUE GLAZES
    HUMMEL, FA
    TIEN, TY
    KIM, KH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1960, 43 (04) : 192 - 197
  • [27] Thermal evolution of Andean iron oxide–apatite (IOA) deposits as revealed by magnetite thermometry
    Gisella Palma
    Martin Reich
    Fernando Barra
    J. Tomás Ovalle
    Irene del Real
    Adam C. Simon
    Scientific Reports, 11
  • [28] Is there a genetic link between iron oxide-apatite and Cu deposits, Norbotten, Sweden?
    Gleeson, SA
    Smith, MP
    Storey, CD
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A298 - A298
  • [29] Sorption of copper and phosphate to diverse biogenic iron (oxyhydr) oxide deposits
    Field, Hannah R.
    Whitaker, Andrew H.
    Henson, Joshua A.
    Duckworth, Owen W.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 697
  • [30] Magnetic and Gravity Gradiometry Framework for Mesoproterozoic Iron Oxide-Apatite and Iron Oxide-Copper-Gold Deposits, Southeast Missouri
    McCafferty, Anne E.
    Phillips, Jeffrey D.
    Driscoll, Rhonda L.
    ECONOMIC GEOLOGY, 2016, 111 (08) : 1859 - 1882