Experiments on phosphate–silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits

被引:0
|
作者
Haroldo L. Lledo
H. Richard Naslund
David M. Jenkins
机构
[1] Universidad Católica de Temuco,Departamento de Obras Civiles y Geología
[2] Binghamton University,Department of Geological Sciences and Environmental Studies
关键词
Magnetite; Apatite; Immiscible; Phosphorus; Kiruna; Iron;
D O I
暂无
中图分类号
学科分类号
摘要
The formation of phosphorus–iron oxide (P–Fe) immiscible melts and their possible connection to the genesis of Kiruna-type and Nelsonite deposits was experimentally investigated by adding phosphoric acid (H3PO4), water, and sulfur, to andesite at 100–450 MPa, 500–900 °C, at the NiNiO and magnetite-hematite fO2 buffers using internally heated gas vessels. The addition of up to 8.02 wt% of H3PO4 to the andesite causes crystallization of apatite. At higher concentrations of H3PO4 whitlockite crystallizes, and at concentrations above ~ 11.4% H3PO4 (at 800 °C, 385 MPa) an immiscible P–Fe melt forms. Adding sulfur at low fO2 (NiNiO) causes an additional immiscible Fe–S melt to form. Increasing the fO2 to the hematite-magnetite buffer causes the sulfur-rich melt to shift in composition to a Ca–S–O melt, and the coexisting P-Fe melt to incorporate large amounts of SO4. Immiscible P-Fe melts can form at temperatures above 1100 °C down to 600 °C (at 400 MPa). Mass balance calculations show that some experimentally produced P-Fe rich immiscible liquids may result in mineral assemblages similar to those found at some Kiruna-type deposits, such as actinolite-rich dikes, and apatite-rich veins. Depending on the geological conditions and the composition the fractionation of a P-Fe melt may result in the formation of nelsonites at high pressures, high temperatures, and low fO2 or Kiruna-type deposits at lower temperatures and higher fO2.
引用
收藏
相关论文
共 50 条
  • [1] Experiments on phosphate-silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits
    Lledo, Haroldo L.
    Naslund, H. Richard
    Jenkins, David M.
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2020, 175 (12)
  • [2] MINERALOGY AND GEOCHEMISTRY OF FE-TI OXIDE AND APATITE (NELSONITE) DEPOSITS AND EVALUATION OF THE LIQUID IMMISCIBILITY HYPOTHESIS
    KOLKER, A
    ECONOMIC GEOLOGY, 1982, 77 (05) : 1146 - 1158
  • [3] SILICATE LIQUID IMMISCIBILITY IN ISOTHERMAL CRYSTALLIZATION EXPERIMENTS
    LONGHI, J
    PROCEEDINGS OF THE LUNAR AND PLANETARY SCIENCE CONFERENCE, 1990, 20 : 13 - 24
  • [4] Magmatic immiscibility and the origin of magnetite-(apatite) iron deposits
    Dorota K. Pietruszka
    John M. Hanchar
    Fernando Tornos
    Richard Wirth
    Nathan A. Graham
    Kenneth P. Severin
    Francisco Velasco
    Matthew Steele-MacInnis
    Wyatt M. Bain
    Nature Communications, 14
  • [5] Magmatic immiscibility and the origin of magnetite-(apatite) iron deposits
    Pietruszka, Dorota K.
    Hanchar, John M.
    Tornos, Fernando
    Wirth, Richard
    Graham, Nathan A.
    Severin, Kenneth P.
    Velasco, Francisco
    Steele-MacInnis, Matthew
    Bain, Wyatt M.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] A magmatic flotation model that genetically links iron oxide - apatite and iron oxide - copper - gold deposits
    Simon, Adam C.
    Knipping, Jaayke
    Childress, Tristan
    La Cruz, Nikita
    Konecke, Brian
    Reich, Martin
    Barra, Fernando
    Palma, Gisella
    Deditius, Artur P.
    Bilenker, Laura
    Lundstrom, Craig
    Bindeman, Ilya
    MINERAL RESOURCES TO DISCOVER, VOLS 1-4, 2017, : 827 - 830
  • [7] Formation of iron oxide–apatite deposits
    Martin Reich
    Adam C. Simon
    Fernando Barra
    Gisella Palma
    Tong Hou
    Laura D. Bilenker
    Nature Reviews Earth & Environment, 2022, 3 : 758 - 775
  • [8] Silicate-iron liquid immiscibility in rhyolitic magma
    I. S. Peretyazhko
    E. A. Savina
    Doklady Earth Sciences, 2014, 457 : 1028 - 1033
  • [9] Silicate and iron phosphate melt immiscibility promotes REE enrichment
    Yan, S. C.
    Wan, B.
    Anenburg, M.
    Mavrogenes, J. A.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2024, 32 : 14 - 20
  • [10] Silicate-iron liquid immiscibility in rhyolitic magma
    Peretyazhko, I. S.
    Savina, E. A.
    DOKLADY EARTH SCIENCES, 2014, 457 (02) : 1028 - 1033