Statistical analysis in metabolic phenotyping

被引:0
|
作者
Benjamin J. Blaise
Gonçalo D. S. Correia
Gordon A. Haggart
Izabella Surowiec
Caroline Sands
Matthew R. Lewis
Jake T. M. Pearce
Johan Trygg
Jeremy K. Nicholson
Elaine Holmes
Timothy M. D. Ebbels
机构
[1] Imperial College London,Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine
[2] Guy’s and St Thomas’ NHS Foundation Trust,Department of Paediatric Anaesthetics, Evelina London Children’s Hospital
[3] King’s College London,Centre for the Developing Brain
[4] Imperial College London,National Phenome Centre, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine
[5] Umeå University,Computational Life Science Cluster, Department of Chemistry
[6] Sartorius Stedim Data Analytics,Sartorius Corporate Research
[7] Murdoch University,Australian National Phenome Centre, Health Futures Institute
[8] Imperial College London,Institute of Global Health Innovation
[9] Murdoch University,Centre for Computational & Systems Medicine Institute of Health Futures
来源
Nature Protocols | 2021年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Metabolic phenotyping is an important tool in translational biomedical research. The advanced analytical technologies commonly used for phenotyping, including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, generate complex data requiring tailored statistical analysis methods. Detailed protocols have been published for data acquisition by liquid NMR, solid-state NMR, ultra-performance liquid chromatography (LC-)MS and gas chromatography (GC-)MS on biofluids or tissues and their preprocessing. Here we propose an efficient protocol (guidelines and software) for statistical analysis of metabolic data generated by these methods. Code for all steps is provided, and no prior coding skill is necessary. We offer efficient solutions for the different steps required within the complete phenotyping data analytics workflow: scaling, normalization, outlier detection, multivariate analysis to explore and model study-related effects, selection of candidate biomarkers, validation, multiple testing correction and performance evaluation of statistical models. We also provide a statistical power calculation algorithm and safeguards to ensure robust and meaningful experimental designs that deliver reliable results. We exemplify the protocol with a two-group classification study and data from an epidemiological cohort; however, the protocol can be easily modified to cover a wider range of experimental designs or incorporate different modeling approaches. This protocol describes a minimal set of analyses needed to rigorously investigate typical datasets encountered in metabolic phenotyping.
引用
收藏
页码:4299 / 4326
页数:27
相关论文
共 50 条
  • [31] Urinary metabolic phenotyping for Alzheimer's disease
    Kurbatova, Natalja
    Garg, Manik
    Whiley, Luke
    Chekmeneva, Elena
    Jimenez, Beatriz
    Gomez-Romero, Maria
    Pearce, Jake
    Kimhofer, Torben
    D'Hondt, Ellie
    Soininen, Hilkka
    Kloszewska, Iwona
    Mecocci, Patrizia
    Tsolaki, Magda
    Vellas, Bruno
    Aarsland, Dag
    Nevado-Holgado, Alejo
    Liu, Benjamine
    Snowden, Stuart
    Proitsi, Petroula
    Ashton, Nicholas J.
    Hye, Abdul
    Legido-Quigley, Cristina
    Lewis, Matthew R.
    Nicholson, Jeremy K.
    Holmes, Elaine
    Brazma, Alvis
    Lovestone, Simon
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [32] Metabolic Phenotyping in Venous Disease: The Need for Standardization
    Onida, Sarah
    Tan, Matthew K. H.
    Kafeza, Marina
    Bergner, Richmond T.
    Shalhoub, Joseph
    Holmes, Elaine
    Davies, Alun H.
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (11) : 3809 - 3820
  • [33] Metabolic phenotyping in phenylketonuria reveals disease clustering independently of metabolic control
    Moritz, Lennart
    Klotz, Katharina
    Gruenert, Sarah Catharina
    Hannibal, Luciana
    Spiekerkoetter, Ute
    MOLECULAR GENETICS AND METABOLISM, 2023, 138 (03)
  • [34] Metabolic profiling and biochemical phenotyping of plant systems
    U. Roessner
    L. Willmitzer
    A. Fernie
    Plant Cell Reports, 2002, 21 : 189 - 196
  • [35] Urinary metabolic phenotyping for Alzheimer’s disease
    Natalja Kurbatova
    Manik Garg
    Luke Whiley
    Elena Chekmeneva
    Beatriz Jiménez
    María Gómez-Romero
    Jake Pearce
    Torben Kimhofer
    Ellie D’Hondt
    Hilkka Soininen
    Iwona Kłoszewska
    Patrizia Mecocci
    Magda Tsolaki
    Bruno Vellas
    Dag Aarsland
    Alejo Nevado-Holgado
    Benjamine Liu
    Stuart Snowden
    Petroula Proitsi
    Nicholas J. Ashton
    Abdul Hye
    Cristina Legido-Quigley
    Matthew R. Lewis
    Jeremy K. Nicholson
    Elaine Holmes
    Alvis Brazma
    Simon Lovestone
    Scientific Reports, 10
  • [36] Body Temperature Measurements for Metabolic Phenotyping in Mice
    Meyer, Carola W.
    Ootsuka, Youichirou
    Romanovsky, Andrej A.
    FRONTIERS IN PHYSIOLOGY, 2017, 8
  • [37] Metabolic phenotyping of healthy and IBD children: Perspectives for individual metabolic monitoring
    Martin, F. -P.
    Cominetti, O.
    Da Silva, L.
    Ezri, J.
    Collino, S.
    Montoliu, I.
    Godin, J. -P.
    Nydegger, A.
    JOURNAL OF CROHNS & COLITIS, 2015, 9 : S108 - S108
  • [38] Metabolic phenotyping to monitor chronic enteritis canceration
    Fan Zhang
    Chunbo Li
    Kui Deng
    Zhuozhong Wang
    Weiwei Zhao
    Kai Yang
    Chunyan Yang
    Zhiwei Rong
    Lei Cao
    Yaxin Lu
    Yue Huang
    Peng Han
    Kang Li
    Metabolomics, 2020, 16
  • [39] Phenotyping for early predictors of obesity and the metabolic syndrome
    A G Dulloo
    J-P Montani
    International Journal of Obesity, 2010, 34 : S1 - S3
  • [40] Automation assisted anaerobic phenotyping for metabolic engineering
    Raj, Kaushik
    Venayak, Naveen
    Diep, Patrick
    Golla, Sai Akhil
    Yakunin, Alexander F.
    Mahadevan, Radhakrishnan
    MICROBIAL CELL FACTORIES, 2021, 20 (01)