Existence of Birkhoff sections for Kupka–Smale Reeb flows of closed contact 3-manifolds

被引:0
|
作者
Gonzalo Contreras
Marco Mazzucchelli
机构
[1] Centro de Investigación en Matemáticas,
[2] CNRS,undefined
[3] UMPA,undefined
[4] École Normale Supérieure de Lyon,undefined
来源
关键词
Reeb flows; Geodesic flows; Surfaces of section; Birkhoff sections; 53D10; 37D40; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
A Reeb vector field satisfies the Kupka–Smale condition when all its closed orbits are non-degenerate, and the stable and unstable manifolds of its hyperbolic closed orbits intersect transversely. We show that, on a closed 3-manifold, any Reeb vector field satisfying the Kupka–Smale condition admits a Birkhoff section. In particular, this implies that the Reeb vector field of a C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document}-generic contact form on a closed 3-manifold admits a Birkhoff section, and that the geodesic vector field of a C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document}-generic Riemannian metric on a closed surface admits a Birkhoff section.
引用
收藏
页码:951 / 979
页数:28
相关论文
共 50 条
  • [1] EXISTENCE OF BIRKHOFF SECTIONS FOR KUPKA-SMALE REEB FLOWS OF CLOSED CONTACT 3-MANIFOLDS
    Contreras, Gonzalo
    Mazzucchelli, Marco
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (05) : 951 - 979
  • [2] Ricci Curvature, Reeb Flows and Contact 3-Manifolds
    Surena Hozoori
    The Journal of Geometric Analysis, 2021, 31 : 10820 - 10845
  • [3] Ricci Curvature, Reeb Flows and Contact 3-Manifolds
    Hozoori, Surena
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 10820 - 10845
  • [4] ON CLOSED ORBITS OF MORSE-SMALE FLOWS ON 3-MANIFOLDS
    SAITO, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 : 482 - 486
  • [5] CONTACT 3-MANIFOLDS WITH THE REEB FLOW SYMMETRY
    Cho, Tong Taek
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (04) : 491 - 500
  • [6] The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed
    Cristofaro-Gardiner, Daniel
    Mazzucchelli, Marco
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (03) : 461 - 481
  • [7] Bott-integrable Reeb flows on 3-manifolds
    Geiges, Hansjoerg
    Hedicke, Jakob
    Saglam, Murat
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [8] Combinatorial Reeb dynamics on punctured contact 3-manifolds
    Avdek, Russell
    GEOMETRY & TOPOLOGY, 2023, 27 (03) : 953 - 1082
  • [9] The harmonicity of the Reeb vector field on contact metric 3-manifolds
    Koufogiorgos, Themis
    Markellos, Michael
    Papantoniou, Vassilis J.
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 234 (02) : 325 - 344
  • [10] Generic properties of 3-dimensional Reeb flows: Birkhoff sections and entropy
    Colin, Vincent
    Dehornoy, Pierre
    Hryniewicz, Umberto
    Rechtman, Ana
    COMMENTARII MATHEMATICI HELVETICI, 2024, 99 (03) : 557 - 611