A New Inversion-Free Iterative Method for Solving a Class of Nonlinear Matrix Equations

被引:0
|
作者
Lotfi Mouhadjer
Boubakeur Benahmed
机构
[1] École Supérieure en Sciences Appliquées de Tlemcen,
[2] Bel Horizon,undefined
[3] Ecole Nationale Polytechnique d’Oran,undefined
关键词
Matrix equation; Hermitian positive definite; Fixed-point iteration; Inversion-free variant iteration; Newton’s method; 15A24; 65F10; 65H10; 49M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new inversion-free iterative method for computation of positive definite solution of the nonlinear matrix equation Xp=A+M(B+X-1)-1M∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X^p=A+M\,(B+X^{-1}\,)^{-1}\,M^{*}, \end{aligned}$$\end{document}where p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document} is a positive integer, A and B are Hermitian positive semidefinite matrices, and M is an arbitrary square complex matrix. This matrix equation has been studied recently in Meng and Kim (J Compt Appl Math 322:139–147, 2017), where the authors proposed an inversion-free algorithm for solving this equation with the hypothesis that the matrix B is nonsingular. For our part, we propose a new algorithm that is applicable for all choices of the positive semidefinite matrix B even if it is singular. To prove the convergence of the proposed algorithm, we prove a new matrix inequality. The efficiency of the proposed algorithm is confirmed by some numerical simulations.
引用
收藏
页码:2825 / 2841
页数:16
相关论文
共 50 条
  • [41] A new two-step iterative method for solving nonlinear equations
    Kang, Shin Min
    Rafiq, Arif
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (01) : 111 - 132
  • [42] New iterative method for solving linear and nonlinear hypersingular integral equations
    Boykov, I. V.
    Roudnev, V. A.
    Boykova, A. I.
    Baulina, O. A.
    APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 280 - 305
  • [43] A new eighth-order iterative method for solving nonlinear equations
    Thukral, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 222 - 229
  • [44] A New Three-step Iterative Method for Solving Nonlinear Equations
    Far, M. Matin
    Aminzadeh, M.
    Asadpour, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2012, 6 (01) : 29 - 39
  • [45] New iterative technique for solving nonlinear equations
    Noor, Muhammad Aslam
    Waseem, Muhammad
    Noor, Khalida Inayat
    Ali, Muhammad Aamir
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 1115 - 1125
  • [46] A new fifth-order iterative method free from second derivative for solving nonlinear equations
    Abdul-Hassan, Noori Yasir
    Ali, Ali Hasan
    Park, Choonkil
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 2877 - 2886
  • [47] A new fifth-order iterative method free from second derivative for solving nonlinear equations
    Noori Yasir Abdul-Hassan
    Ali Hasan Ali
    Choonkil Park
    Journal of Applied Mathematics and Computing, 2022, 68 : 2877 - 2886
  • [48] An efficient inversion-free method for solving the nonlinear matrix equation Xp + Σj=1m Aj*X-qj Aj = Q
    Erfanifar, Raziyeh
    Sayevand, Khosro
    Hajarian, Masoud
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (07): : 3071 - 3089
  • [49] Using the iterative reproducing kernel method for solving a class of nonlinear fractional differential equations
    Wang, Yu-Lan
    Tian, Dan
    Bao, Shu-Hong
    Li, Zhi-Yuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) : 2558 - 2572
  • [50] Iterative Collocation Method for Solving a class of Nonlinear Weakly Singular Volterra Integral Equations
    Kherchouche, Khedidja
    Bellour, Azzeddine
    Lima, Pedro
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2021, 14 : 33 - 41