Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays

被引:0
|
作者
Abhi Saxena
Arnab Manna
Rahul Trivedi
Arka Majumdar
机构
[1] University of Washington,Department of Electrical & Computer Engineering
[2] University of Washington,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Analog quantum simulators rely on programmable and scalable quantum devices to emulate Hamiltonians describing various physical phenomenon. Photonic coupled cavity arrays are a promising alternative platform for realizing such simulators, due to their potential for scalability, small size, and high-temperature operability. However, programmability and nonlinearity in photonic cavities remain outstanding challenges. Here, using a silicon photonic coupled cavity array made up of 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8$$\end{document} high quality factor (Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} up to~7.1×104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\, \sim 7.1\times {10}^{4}$$\end{document}) resonators and equipped with specially designed thermo-optic island heaters for independent control of cavities, we demonstrate a programmable photonic cavity array in the telecom regime, implementing tight-binding Hamiltonians with access to the full eigenenergy spectrum. We report a ~50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 50\%$$\end{document} reduction in the thermal crosstalk between neighboring sites of the cavity array compared to traditional heaters, and then present a control scheme to program the cavity array to a given tight-binding Hamiltonian. The ability to independently program high-Q photonic cavities, along with the compatibility of silicon photonics to high volume manufacturing opens new opportunities for scalable quantum simulation using telecom regime infrared photons.
引用
收藏
相关论文
共 50 条
  • [31] The exponential decay of eigenfunctions for tight-binding Hamiltonians via landscape and dual landscape functions
    Wei Wang
    Shiwen Zhang
    Annales Henri Poincaré, 2021, 22 : 1429 - 1457
  • [32] Tight-binding Hamiltonians for superconducting YBa2Cu3O7
    Nomura, K
    Kamimura, H
    SOLID STATE COMMUNICATIONS, 1999, 111 (03) : 143 - 148
  • [33] Tight-binding parametrization of transition metal elements from LCAO ab initio Hamiltonians
    Taneda, A
    Esfarjani, K
    Li, ZQ
    Kawazoe, Y
    COMPUTATIONAL MATERIALS SCIENCE, 1998, 9 (3-4) : 343 - 347
  • [34] The exponential decay of eigenfunctions for tight-binding Hamiltonians via landscape and dual landscape functions
    Wang, Wei
    Zhang, Shiwen
    ANNALES HENRI POINCARE, 2021, 22 (05): : 1429 - 1457
  • [35] Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy
    Serban, Elena Alexandra
    Palisaitis, Justinas
    Persson, Per Ola Ake
    Hultman, Lars
    Birch, Jens
    Hsiao, Ching-Lien
    THIN SOLID FILMS, 2018, 660 : 950 - 955
  • [36] The Cavity-Effect in Site-Controlled GaN Nanocolumns with InGaN Insertions
    Kazanov, D. R.
    Evropeytsev, E. A.
    Shubina, T. V.
    SEMICONDUCTORS, 2019, 53 (16) : 2085 - 2089
  • [37] Site-controlled quantum dots coupled to a photonic crystal molecule
    Rigal, B.
    Jarlov, C.
    Gallo, P.
    Dwir, B.
    Rudra, A.
    Calic, M.
    Kapon, E.
    APPLIED PHYSICS LETTERS, 2015, 107 (14)
  • [38] Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity
    Eckhardt, Christian J.
    Passetti, Giacomo
    Othman, Moustafa
    Karrasch, Christoph
    Cavaliere, Fabio
    Sentef, Michael A.
    Kennes, Dante M.
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [39] Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity
    Christian J. Eckhardt
    Giacomo Passetti
    Moustafa Othman
    Christoph Karrasch
    Fabio Cavaliere
    Michael A. Sentef
    Dante M. Kennes
    Communications Physics, 5
  • [40] Site-controlled Growth and Field Emission Properties of ZnO Nanorod Arrays
    Zhang, Yang
    Lee, Ching-Ting
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (15): : 5920 - 5923