MoNGEL: monotonic nested generalized exemplar learning

被引:0
|
作者
Javier García
Habib M. Fardoun
Daniyal M. Alghazzawi
José-Ramón Cano
Salvador García
机构
[1] University of Jaén,Department of Computer Science
[2] King Abdulaziz University,Department of Information Systems, Faculty of Computing and Information Technology
[3] University of Jaén,Department of Computer Science, EPS of Linares
[4] University of Granada,Department of Computer Science and Artificial Intelligence
来源
关键词
Monotonic classification; Instance-based learning; Rule induction; Nested generalized examples;
D O I
暂无
中图分类号
学科分类号
摘要
In supervised prediction problems, the response attribute depends on certain explanatory attributes. Some real problems require the response attribute to represent ordinal values that should increase with some of the explaining attributes. They are called classification problems with monotonicity constraints. In this paper, we aim at formalizing the approach to nested generalized exemplar learning with monotonicity constraints, proposing the monotonic nested generalized exemplar learning (MoNGEL) method. It accomplishes learning by storing objects in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, hybridizing instance-based learning and rule learning into a combined model. An experimental analysis is carried out over a wide range of monotonic data sets. The results obtained have been verified by non-parametric statistical tests and show that MoNGEL outperforms well-known techniques for monotonic classification, such as ordinal learning model, ordinal stochastic dominance learner and k-nearest neighbor, considering accuracy, mean absolute error and simplicity of constructed models.
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条
  • [21] An Exemplar for Teaching and Learning Qualitative Research
    Onwuegbuzie, Anthony J.
    Leech, Nancy L.
    Slate, John R.
    Stark, Marcella
    Sharma, Bipin
    Frels, Rebecca
    Harris, Kristin
    Combs, Julie P.
    [J]. QUALITATIVE REPORT, 2012, 17 (01) : 16 - 77
  • [22] An exemplar model for learning object classes
    Chum, Ondrej
    Zisserman, Andrew
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 620 - +
  • [23] CliqueCNN: Deep Unsupervised Exemplar Learning
    Bautista, Miguel A.
    Sanakoyeu, Artsiom
    Sutter, Ekaterina
    Ommer, Bjoern
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [24] Nested sampling for parameter inference in systems biology: application to an exemplar circadian model
    Aitken, Stuart
    Akman, Ozgur E.
    [J]. BMC SYSTEMS BIOLOGY, 2013, 7 : 72
  • [25] Monotonic and implementable solutions in generalized matching problems
    Ehlers, L
    [J]. JOURNAL OF ECONOMIC THEORY, 2004, 114 (02) : 358 - 369
  • [26] Order monotonic solutions for generalized characteristic functions
    van den Brink, Rene
    Gonzalez-Arangueena, Enrique
    Manuel, Conrado
    del Pozo, Monica
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 238 (03) : 786 - 796
  • [27] Learning monotonic linear functions
    Kalai, A
    [J]. LEARNING THEORY, PROCEEDINGS, 2004, 3120 : 487 - 501
  • [28] Generalized smooth monotonic regression in additive modeling
    Tutz, Gerhard
    Leitenstorfer, Florian
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (01) : 165 - 188
  • [29] Monotonic learning with hypothesis evolution
    Li, Ming
    Zhang, Chenyi
    Li, Qin
    Cheng, Shuangqin
    [J]. INFORMATION SCIENCES, 2023, 647
  • [30] GENERALIZED TRAITOR TRACING FOR NESTED CODES
    Varna, Avinash L.
    Jin, Hongxia
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 561 - +