MoNGEL: monotonic nested generalized exemplar learning

被引:0
|
作者
Javier García
Habib M. Fardoun
Daniyal M. Alghazzawi
José-Ramón Cano
Salvador García
机构
[1] University of Jaén,Department of Computer Science
[2] King Abdulaziz University,Department of Information Systems, Faculty of Computing and Information Technology
[3] University of Jaén,Department of Computer Science, EPS of Linares
[4] University of Granada,Department of Computer Science and Artificial Intelligence
来源
关键词
Monotonic classification; Instance-based learning; Rule induction; Nested generalized examples;
D O I
暂无
中图分类号
学科分类号
摘要
In supervised prediction problems, the response attribute depends on certain explanatory attributes. Some real problems require the response attribute to represent ordinal values that should increase with some of the explaining attributes. They are called classification problems with monotonicity constraints. In this paper, we aim at formalizing the approach to nested generalized exemplar learning with monotonicity constraints, proposing the monotonic nested generalized exemplar learning (MoNGEL) method. It accomplishes learning by storing objects in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, hybridizing instance-based learning and rule learning into a combined model. An experimental analysis is carried out over a wide range of monotonic data sets. The results obtained have been verified by non-parametric statistical tests and show that MoNGEL outperforms well-known techniques for monotonic classification, such as ordinal learning model, ordinal stochastic dominance learner and k-nearest neighbor, considering accuracy, mean absolute error and simplicity of constructed models.
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条
  • [1] MoNGEL: monotonic nested generalized exemplar learning
    Garcia, Javier
    Fardoun, Habib M.
    Alghazzawi, Daniyal M.
    Cano, Jose-Ramon
    Garcia, Salvador
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (02) : 441 - 452
  • [2] Evolutionary selection of hyperrectangles in nested generalized exemplar learning
    Garcia, Salvador
    Derrac, Joaquin
    Luengo, Julian
    Carmona, Cristobal J.
    Herrera, Francisco
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (03) : 3032 - 3045
  • [3] NESTED HYPERRECTANGLES FOR EXEMPLAR-BASED LEARNING
    SALZBERG, S
    [J]. ANALOGICAL AND INDUCTIVE INFERENCE /, 1989, 397 : 184 - 201
  • [4] Learning and exemplar.
    Herfarth, C
    [J]. CHIRURG, 2005, 76 (06): : 599 - 603
  • [5] Monotonic and dual monotonic language learning
    Lange, S
    Zeugmann, T
    Kapur, S
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 155 (02) : 365 - 410
  • [6] Exemplar Network: A Generalized Mixture Model
    Tsuchiya, Chikao
    Malisiewicz, Tomasz
    Torralba, Antonio
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 598 - 603
  • [7] An algorithm for generalized monotonic smoothing
    Wang, Z
    [J]. JOURNAL OF APPLIED STATISTICS, 2000, 27 (04) : 495 - 507
  • [8] Synchronizing generalized monotonic automata
    Ananichev, DS
    Volkov, M
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 330 (01) : 3 - 13
  • [9] GENERALIZED NESTED DISSECTION
    LIPTON, RJ
    ROSE, DJ
    TARJAN, RE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) : 346 - 358
  • [10] Modification of Nested Hyperrectangle Exemplar as a Proposition of Information Fusion Method
    Wozniak, Michal
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 687 - 694