Continuous rational maps into spheres

被引:0
|
作者
Wojciech Kucharz
机构
[1] Jagiellonian University,Institute of Mathematics, Faculty of Mathematics and Computer Science
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Real algebraic variety; Regular map; Continuous rational map; Approximation; Homotopy; 14P05; 14P25; 57R99;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact nonsingular real algebraic variety. We prove that if a continuous map from X into the unit p-sphere is homotopic to a continuous rational map, then, under certain assumptions, it can be approximated in the compact-open topology by continuous rational maps. As a byproduct, we also obtain some results on approximation of smooth submanifolds by nonsingular subvarieties.
引用
收藏
页码:1201 / 1215
页数:14
相关论文
共 50 条
  • [31] Skyrmions and rational maps
    Ioannidou, T
    Piette, B
    Sutcliffe, P
    Zakrzewski, W
    NONLINEARITY, 2001, 14 (01) : C1 - C5
  • [32] Quantitative rational approximation on spheres
    Alam, Mahbub
    Ghosh, Anish
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (05):
  • [33] Parabolic rational maps
    Haydn, N
    Isola, S
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 673 - 689
  • [34] ON DECOMPOSABLE RATIONAL MAPS
    Cabrera, Carlos
    Makienko, Peter
    CONFORMAL GEOMETRY AND DYNAMICS, 2011, 15 : 210 - 218
  • [35] RATIONAL RIEMANN MAPS
    ERKAMA, T
    LECTURE NOTES IN MATHEMATICS, 1988, 1351 : 101 - 109
  • [36] Rational CR maps
    D'Angelo, John P. P.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (05)
  • [37] ON THE DYNAMICS OF RATIONAL MAPS
    MANE, R
    SAD, P
    SULLIVAN, D
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1983, 16 (02): : 193 - 217
  • [38] Harmonic maps and morphisms from spheres and deformed spheres
    Dong, YX
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 129 - 139
  • [40] BIHARMONIC WAVE MAPS INTO SPHERES
    Herr, Sebastian
    Lamm, Tobias
    Schnaubelt, Roland
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 787 - 796