Martingale Transforms and the Hardy-Littlewood-Sobolev Inequality for Semigroups

被引:0
|
作者
Daesung Kim
机构
[1] Purdue University,Department of Mathematics
来源
Potential Analysis | 2016年 / 45卷
关键词
Martingale transform; The Hardy-Littlewood-Paley inequality; Fractional integrals; The Littlewood-Paley ; -functions; General Markovian semigroups; 26D10; 42B25; 47G30; 47D07; 60G46; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
We give a representation of the fractional integral for symmetric Markovian semigroups as the projection of martingale transforms and prove the Hardy-Littlewood-Sobolev (HLS) inequality based on this representation. The proof rests on a new inequality for the fractional Littlewood-Paley g–function.
引用
收藏
页码:795 / 807
页数:12
相关论文
共 50 条
  • [21] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Di Wu
    ZuoShunHua Shi
    DunYan Yan
    Science China Mathematics, 2014, 57 : 963 - 970
  • [22] Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality
    Applebaum, David
    Banuelos, Rodrigo
    ANALYTIC METHODS IN INTERDISCIPLINARY APPLICATIONS, 2015, 116 : 17 - 40
  • [23] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Wu Di
    Shi ZuoShunHua
    Yan DunYan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 963 - 970
  • [24] ON THE HARDY-LITTLEWOOD-SOBOLEV TYPE SYSTEMS
    Cheng, Ze
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2059 - 2074
  • [25] Hardy-Littlewood-Sobolev inequality and existence of the extremal functions with extended kernel
    Liu, Zhao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1683 - 1705
  • [26] Hardy-Littlewood-Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Chen, Ting
    Sun, Wenchang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [27] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [28] Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality
    Zuoshunhua Shi
    Wu Di
    Dunyan Yan
    Analysis in Theory and Applications, 2014, 30 (02) : 193 - 204
  • [29] On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality
    Onodera, Michiaki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 498 - 510
  • [30] On discrete reversed Hardy-Littlewood-Sobolev inequalities
    Zhou, Tiantian
    Lei, Yutian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,