Fourier transform of anisotropic mixed-norm Hardy spaces

被引:0
|
作者
Long Huang
Der-Chen Chang
Dachun Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Georgetown University,Department of Mathematics and Statistics
[3] Fu Jen Catholic University,Graduate Institute of Business Adminstration, College of Management
来源
关键词
Anisotropic (mixed-norm) Hardy space; Fourier transform; Hardy-Littlewood inequality; 42B35; 42B30; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let a→=(a1…an)∈[1∞)np→=(p1…pn)∈(01]nHa→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a \,: = \,\left( {{a_1}, \ldots,{a_n}} \right) \in {\left[ {1,\infty } \right)^n},\,\overrightarrow {p\,}: = \left( {{p_1}, \ldots,{p_n}} \right) \in {\left( {0,1} \right]^n},H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document} be the anisotropic mixed-norm Hardy space associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a $$\end{document} defined via the radial maximal function, and let f belong to the Hardy space Ha→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document}. In this article, we show that the Fourier transform f^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{f}$$\end{document} coincides with a continuous function g on ℝn in the sense of tempered distributions and, moreover, this continuous function g, multiplied by a step function associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a $$\end{document}, can be pointwisely controlled by a constant multiple of the Hardy space norm of f. These proofs are achieved via the known atomic characterization of Ha→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document} and the establishment of two uniform estimates on anisotropic mixed-norm atoms. As applications, we also conclude a higher order convergence of the continuous function g at the origin. Finally, a variant of the Hardy-Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained. All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(ℝn) with p ∈ (0, 1], and are even new for isotropic mixed-norm Hardy spaces on ∈n.
引用
下载
收藏
页码:119 / 139
页数:20
相关论文
共 50 条
  • [21] Mixed-norm Herz spaces and their applications in related Hardy spaces
    Zhao, Yirui
    Yang, Dachun
    Zhang, Yangyang
    ANALYSIS AND APPLICATIONS, 2023, 21 (05) : 1131 - 1222
  • [22] FOURIER TRANSFORM OF ANISOTROPIC HARDY SPACES
    Bownik, Marcin
    Wang, Li-An Daniel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (07) : 2299 - 2308
  • [23] Atomic and Littlewood-Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 1991 - 2067
  • [24] Continuous embedding between harmonic Hardy spaces and mixed-norm spaces
    Hu, ZJ
    CHINESE SCIENCE BULLETIN, 1997, 42 (02): : 106 - 108
  • [25] Continuous embedding between harmonic Hardy spaces and mixed-norm spaces
    HU ZhangjianDepartment of Mathematics
    Science Bulletin, 1997, (02) : 106 - 108
  • [26] Sublinear operators on mixed-norm Hardy spaces with variable exponents
    Ho, Kwok-Pun
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (03) : 481 - 502
  • [27] Hardy–Littlewood–Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Ting Chen
    Wenchang Sun
    The Journal of Geometric Analysis, 2022, 32
  • [28] Hardy-Littlewood-Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Chen, Ting
    Sun, Wenchang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [29] Sharp Norm Estimates for the Bergman Operator From Weighted Mixed-norm Spaces to Weighted Hardy Spaces
    Cascante, Carme
    Fabrega, Joan
    Ortega, Joaquin M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (06): : 1257 - 1284
  • [30] MIXED-NORM α-MODULATION SPACES
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (05) : 3323 - 3356