Fourier transform of anisotropic mixed-norm Hardy spaces

被引:0
|
作者
Long Huang
Der-Chen Chang
Dachun Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Georgetown University,Department of Mathematics and Statistics
[3] Fu Jen Catholic University,Graduate Institute of Business Adminstration, College of Management
来源
关键词
Anisotropic (mixed-norm) Hardy space; Fourier transform; Hardy-Littlewood inequality; 42B35; 42B30; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let a→=(a1…an)∈[1∞)np→=(p1…pn)∈(01]nHa→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a \,: = \,\left( {{a_1}, \ldots,{a_n}} \right) \in {\left[ {1,\infty } \right)^n},\,\overrightarrow {p\,}: = \left( {{p_1}, \ldots,{p_n}} \right) \in {\left( {0,1} \right]^n},H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document} be the anisotropic mixed-norm Hardy space associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a $$\end{document} defined via the radial maximal function, and let f belong to the Hardy space Ha→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document}. In this article, we show that the Fourier transform f^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{f}$$\end{document} coincides with a continuous function g on ℝn in the sense of tempered distributions and, moreover, this continuous function g, multiplied by a step function associated with a→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow a $$\end{document}, can be pointwisely controlled by a constant multiple of the Hardy space norm of f. These proofs are achieved via the known atomic characterization of Ha→p→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\overrightarrow a }^{\overrightarrow p }\left( {{\mathbb{R}^n}} \right)$$\end{document} and the establishment of two uniform estimates on anisotropic mixed-norm atoms. As applications, we also conclude a higher order convergence of the continuous function g at the origin. Finally, a variant of the Hardy-Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained. All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(ℝn) with p ∈ (0, 1], and are even new for isotropic mixed-norm Hardy spaces on ∈n.
引用
收藏
页码:119 / 139
页数:20
相关论文
共 50 条
  • [1] Fourier transform of anisotropic mixed-norm Hardy spaces
    Huang, Long
    Chang, Der-Chen
    Yang, Dachun
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (01) : 119 - 139
  • [2] FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM HARDY SPACES WITH APPLICATIONS TO HARDY-LITTLEWOOD INEQUALITIES
    Liu, Jun
    Lu, Yaqian
    Zhang, Mingdong
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) : 927 - 944
  • [3] Anisotropic Mixed-Norm Hardy Spaces
    Cleanthous, G.
    Georgiadis, A. G.
    Nielsen, M.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 2758 - 2787
  • [4] Anisotropic Mixed-Norm Hardy Spaces
    G. Cleanthous
    A. G. Georgiadis
    M. Nielsen
    [J]. The Journal of Geometric Analysis, 2017, 27 : 2758 - 2787
  • [5] Summability in anisotropic mixed-norm Hardy spaces
    Li, Nan
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3362 - 3376
  • [6] DUAL SPACES OF ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1201 - 1215
  • [7] Anisotropic mixed-norm Campanato-type spaces with applications to duals of anisotropic mixed-norm Hardy spaces
    Huang, Long
    Yang, Dachun
    Yuan, Wen
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (04)
  • [8] Anisotropic mixed-norm Campanato-type spaces with applications to duals of anisotropic mixed-norm Hardy spaces
    Long Huang
    Dachun Yang
    Wen Yuan
    [J]. Banach Journal of Mathematical Analysis, 2021, 15
  • [9] FOURIER MULTIPLIERS ON ANISOTROPIC MIXED-NORM SPACES OF DISTRIBUTIONS
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    Nielsen, Morten
    [J]. MATHEMATICA SCANDINAVICA, 2019, 124 (02) : 289 - 304
  • [10] The Mihlin Multiplier Theorem on Anisotropic Mixed-Norm Hardy Spaces
    Huang, Long
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)