A study of the turing pattern formation in a predator-prey model based on network and non-network environments

被引:0
|
作者
Yin Liu
Xiangyu Tao
Zhengdi Zhang
Linhe Zhu
机构
[1] Jiangsu University,School of Mathematical Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we have established the predator-prey model with time delay based on network and non-network environments. We study the Turing instability of this model in continuous and discrete media respectively. Based on the conditions for the Turing instability, we carry out a lot of numerical simulations for the ordinary model and the network version model respectively, and analyze the influence of the diffusion coefficients and other parameters on the pattern structure. From this we can see that the model in continuous media and discrete media usually have the same pattern structure when it is finally stabilized, but the time required for pattern stabilization in these two cases is different, and it usually takes more time when there is in the case of non-network. And the parameters in the model would have a certain impact on the pattern formation. The conclusion we obtained is helpful to maintain the balanced development of biological populations and protect the diversity of biological species.
引用
收藏
相关论文
共 50 条
  • [1] A study of the turing pattern formation in a predator-prey model based on network and non-network environments
    Liu, Yin
    Tao, Xiangyu
    Zhang, Zhengdi
    Zhu, Linhe
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (06):
  • [2] Pattern dynamics in a reaction-diffusion predator-prey model with Allee effect based on network and non-network environments
    Zhu, Linhe
    Tao, Xiangyu
    Shen, Shuling
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [3] Complex dynamic analysis of a reaction-diffusion predator-prey model in the network and non-network environment
    Miao, Li
    Zhu, Linhe
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [4] Pattern Dynamics in a Predator-Prey Model with Diffusion Network
    Yang, Wenjie
    Zheng, Qianqian
    Shen, Jianwei
    Hu, Qing
    [J]. COMPLEXITY, 2022, 2022
  • [5] Dichotomous-noise-induced Turing pattern formation in a predator-prey model
    Lai, Ting
    Yuan, Quan
    Zhang, Jingwen
    Wang, Haohua
    [J]. CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1803 - 1818
  • [6] Turing pattern formation in a predator-prey system with cross diffusion
    Ling, Zhi
    Zhang, Lai
    Lin, Zhigui
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5022 - 5032
  • [7] Pattern formation of a predator-prey model
    Liu, Pan-Ping
    Jin, Zhen
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (03) : 177 - 183
  • [8] Study of Turing patterns in a SI reaction-diffusion propagation system based on network and non-network environments
    Tang, Yuxuan
    Shen, Shuling
    Zhu, Linhe
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (01)
  • [9] Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting
    Gao, Xiaoyan
    Ishag, Sadia
    Fu, Shengmao
    Li, Wanjun
    Wang, Weiming
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [10] Bifurcations and Pattern Formation in a Predator-Prey Model
    Cai, Yongli
    Gui, Zhanji
    Zhang, Xuebing
    Shi, Hongbo
    Wang, Weiming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (11):