Long-Time Dynamics of Balakrishnan–Taylor Extensible Beams

被引:0
|
作者
E. H. Gomes Tavares
M. A. Jorge Silva
V. Narciso
机构
[1] University of São Paulo,Institute of Mathematical and Computer Sciences
[2] State University of Londrina,Department of Mathematics
[3] State University of Mato Grosso do Sul,Center of Exact Sciences
关键词
Extensible beam; Balakrishnan–Taylor damping; Long-time dynamics; Global attractor; Fractal dimension; 35B40; 35B41; 37L30; 35L75; 74H40; 74K99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with well-posedness and long-time dynamics for a class extensible beams with nonlocal Balakrishnan–Taylor and frictional damping. The related model describes vibrations in nonlinear extensible beams arising in connection with models of oscillation in pipes and supersonic panel flutter. Our main results feature the study of the nonlinear dynamical system generated by the problem. The main novelty is to explore the global Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-regularity (q≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 2$$\end{document}) in time of the nonlocal Balakrishnan–Taylor term and show how it generates a dissipative term that plays an important role in the asymptotic behavior of solutions, mainly in what concerns to achieve the useful property of quasi-stability in the theory of infinite-dimensional dynamical systems.
引用
收藏
页码:1157 / 1175
页数:18
相关论文
共 50 条
  • [21] Long-time dynamics of internal wave streaming
    Jamin, Timothee
    Kataoka, Takeshi
    Dauxois, Thierry
    Akylas, T. R.
    JOURNAL OF FLUID MECHANICS, 2021, 907
  • [22] Electrostatic bottle for long-time storage of fast ion beams
    Zajfman, D
    Heber, O
    VejbyChristensen, L
    BenItzhak, I
    Rappaport, M
    Fishman, R
    Dahan, M
    PHYSICAL REVIEW A, 1997, 55 (03): : R1577 - R1580
  • [23] Long-Time Dynamics of a Plate Equation with Memory and Time Delay
    Baowei Feng
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 395 - 418
  • [24] Long-time dynamics of a von Karman equation with time delay
    Park, Sun Hye
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 128 - 134
  • [25] Dynamics of a Thermoelastic Balakrishnan-Taylor Beam Model with Fractional Operators
    Tavares, Eduardo H. Gomes
    Silva, Marcio A. Jorge
    Li, Yanan
    Narciso, Vando
    Yang, Zhijian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [26] Long-Time Dynamics of a Plate Equation with Memory and Time Delay
    Feng, Baowei
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 395 - 418
  • [27] Long-time dynamics of the directional solidification of rodlike eutectics
    Perrut, Mikael
    Akamatsu, Silvere
    Bottin-Rousseau, Sabine
    Faivre, Gabriel
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [28] LONG-TIME SEMICLASSICAL DYNAMICS OF CHAOS - THE STADIUM BILLIARD
    TOMSOVIC, S
    HELLER, EJ
    PHYSICAL REVIEW E, 1993, 47 (01): : 282 - 299
  • [29] On Long-Time Dynamics of the Solution of Doubly Nonlinear Equation
    Emil Novruzov
    Ali Hagverdiyev
    Qualitative Theory of Dynamical Systems, 2016, 15 : 127 - 155
  • [30] Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay
    Lee, Mi Jin
    Park, Jong Yeoul
    Kang, Yong Han
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 478 - 487