Long-Time Dynamics of Balakrishnan–Taylor Extensible Beams

被引:0
|
作者
E. H. Gomes Tavares
M. A. Jorge Silva
V. Narciso
机构
[1] University of São Paulo,Institute of Mathematical and Computer Sciences
[2] State University of Londrina,Department of Mathematics
[3] State University of Mato Grosso do Sul,Center of Exact Sciences
关键词
Extensible beam; Balakrishnan–Taylor damping; Long-time dynamics; Global attractor; Fractal dimension; 35B40; 35B41; 37L30; 35L75; 74H40; 74K99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with well-posedness and long-time dynamics for a class extensible beams with nonlocal Balakrishnan–Taylor and frictional damping. The related model describes vibrations in nonlinear extensible beams arising in connection with models of oscillation in pipes and supersonic panel flutter. Our main results feature the study of the nonlinear dynamical system generated by the problem. The main novelty is to explore the global Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-regularity (q≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 2$$\end{document}) in time of the nonlocal Balakrishnan–Taylor term and show how it generates a dissipative term that plays an important role in the asymptotic behavior of solutions, mainly in what concerns to achieve the useful property of quasi-stability in the theory of infinite-dimensional dynamical systems.
引用
收藏
页码:1157 / 1175
页数:18
相关论文
共 50 条
  • [1] Long-Time Dynamics of Balakrishnan-Taylor Extensible Beams
    Gomes Tavares, E. H.
    Jorge Silva, M. A.
    Narciso, V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1157 - 1175
  • [2] Long-time dynamics of a class of nonlocal extensible beams with time delay
    Meng, Fengjuan
    Liu, Cuncai
    Zhang, Chang
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (02) : 319 - 333
  • [3] LONG-TIME DYNAMICS FOR A CLASS OF EXTENSIBLE BEAMS WITH NONLOCAL NONLINEAR DAMPING
    Jorge da Silva, Marcio Antonio
    Narciso, Vando
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (03): : 437 - 470
  • [4] Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping
    Zayd Hajjej
    Semigroup Forum, 2024, 108 : 391 - 412
  • [5] Long-time behavior of a model of extensible beams with nonlinear boundary dissipations
    Ma, T. F.
    Narciso, V.
    Pelicer, M. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 694 - 703
  • [6] Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Narciso, V
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 197 - 222
  • [7] Long-time dynamics of an extensible plate equation with thermal memory
    Aguiar Barbosa, Alisson Rafael
    Ma, To Fu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 143 - 165
  • [8] Exponential stability of extensible beams equation with Balakrishnan-Taylor, strong and localized nonlinear damping
    Hajjej, Zayd
    SEMIGROUP FORUM, 2024, 108 (02) : 391 - 412
  • [9] Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity
    Zhao, Chunxiang
    Ma, Shan
    Zhong, Chengkui
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (03)
  • [10] LONG-TIME DYNAMICS OF RUBBER NETWORKS
    RONCA, G
    POLYMER, 1979, 20 (11) : 1321 - 1323