Modelling NASDAQ Series by Sparse Multifractional Brownian Motion

被引:0
|
作者
Pierre R. Bertrand
Abdelkader Hamdouni
Samia Khadhraoui
机构
[1] INRIA Saclay and Clermont Université,Laboratoire de Mathématiques UMR CNRS
[2] University of Monastir,Computational Mathematics Laboratory, Faculté des Sciences
[3] Institut Supérieur de Gestion,undefined
关键词
Model selection; Finance; Fractional Brownian motion; Multi-fractional Brownian motion; Generalized quadratic variation; Wavelet analysis; 60G20; 62M09; 62P05; 91B70; 91B84;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to compare the performance of different estimators of Hurst index for multifractional Brownian motion (mBm), namely, Generalized Quadratic Variation (GQV) Estimator, Wavelet Estimator and Linear Regression GQV Estimator. Both estimators are used in the real financial dataset Nasdaq time series from 1971 to the 3rd quarter of 2009. Firstly, we review definitions, properties and statistical studies of fractional Brownian motion (fBm) and mBm. Secondly, a numerical artifact is observed: when we estimate the time varying Hurst index H(t) for an mBm, sampling fluctuation gives the impression that H(t) is itself a stochastic process, even when H(t) is constant. To avoid this artifact, we introduce sparse modelling for mBm and apply it to Nasdaq time series.
引用
收藏
页码:107 / 124
页数:17
相关论文
共 50 条
  • [1] Modelling NASDAQ Series by Sparse Multifractional Brownian Motion
    Bertrand, Pierre R.
    Hamdouni, Abdelkader
    Khadhraoui, Samia
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (01) : 107 - 124
  • [2] Identification of multifractional Brownian motion
    Coeurjolly, JF
    BERNOULLI, 2005, 11 (06) : 987 - 1008
  • [3] A Generalization of Multifractional Brownian Motion
    Gupta, Neha
    Kumar, Arun
    Leonenko, Nikolai
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [4] The Generalized Multifractional Brownian Motion
    Antoine Ayache
    Jacques Levy Vehel
    Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 7 - 18
  • [5] Testing of Multifractional Brownian Motion
    Balcerek, Michal
    Burnecki, Krzysztof
    ENTROPY, 2020, 22 (12) : 1 - 17
  • [6] Beyond multifractional Brownian motion: new stochastic models for geophysical modelling
    Vehel, J. Levy
    NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) : 643 - 655
  • [7] Extremes of standard multifractional Brownian motion
    Bai, Long
    STATISTICS & PROBABILITY LETTERS, 2020, 159
  • [8] The large increments of a multifractional Brownian motion
    Lin, ZY
    STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 107 - 121
  • [9] Stochastic Volatility and Multifractional Brownian Motion
    Ayache, Antoine
    Peng, Qidi
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 210 - 236
  • [10] Some properties of a multifractional Brownian motion
    Lin, Zhengyan
    Zheng, Jing
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 687 - 692