A Generalization of Multifractional Brownian Motion

被引:1
|
作者
Gupta, Neha [1 ]
Kumar, Arun [1 ]
Leonenko, Nikolai [2 ]
机构
[1] Indian Inst Technol Ropar, Dept Math, Rupnagar 140001, India
[2] Cardiff Univ, Cardiff Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
基金
英国工程与自然科学研究理事会;
关键词
multifractional Brownian motion; long range dependence; harmonizable representation; Hurst parameter; Holder continuity; FRACTIONAL STABLE MOTION;
D O I
10.3390/fractalfract6020074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, some properties of multifractional Brownian motion (MFBM) are discussed. It is shown that it has persistence of signs long range dependence (LRD) and persistence of magnitudes LRD properties. A generalization called here nth order multifractional Brownian motion (n-MFBM) that allows to take the functional parameter <mml:semantics>H(t)</mml:semantics> values in the range <mml:semantics>(n-1,n)</mml:semantics> is discussed. Two representations of the n-MFBM are given and their relationship with each other is obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identification of multifractional Brownian motion
    Coeurjolly, JF
    BERNOULLI, 2005, 11 (06) : 987 - 1008
  • [2] The Generalized Multifractional Brownian Motion
    Antoine Ayache
    Jacques Levy Vehel
    Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 7 - 18
  • [3] Testing of Multifractional Brownian Motion
    Balcerek, Michal
    Burnecki, Krzysztof
    ENTROPY, 2020, 22 (12) : 1 - 17
  • [4] Extremes of standard multifractional Brownian motion
    Bai, Long
    STATISTICS & PROBABILITY LETTERS, 2020, 159
  • [5] The large increments of a multifractional Brownian motion
    Lin, ZY
    STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 107 - 121
  • [6] Stochastic Volatility and Multifractional Brownian Motion
    Ayache, Antoine
    Peng, Qidi
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 210 - 236
  • [7] Some properties of a multifractional Brownian motion
    Lin, Zhengyan
    Zheng, Jing
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 687 - 692
  • [8] A note on approximation to multifractional Brownian motion
    DAI HongShuai1 & LI YuQiang2 1College of Mathematics and Information Sciences
    2School of Finance and Statistics
    Science China(Mathematics), 2011, 54 (10) : 2145 - 2154
  • [9] A note on approximation to multifractional Brownian motion
    HongShuai Dai
    YuQiang Li
    Science China Mathematics, 2011, 54 : 2145 - 2154
  • [10] A note on approximation to multifractional Brownian motion
    Dai HongShuai
    Li YuQiang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2145 - 2154