A Generalization of Multifractional Brownian Motion

被引:1
|
作者
Gupta, Neha [1 ]
Kumar, Arun [1 ]
Leonenko, Nikolai [2 ]
机构
[1] Indian Inst Technol Ropar, Dept Math, Rupnagar 140001, India
[2] Cardiff Univ, Cardiff Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
基金
英国工程与自然科学研究理事会;
关键词
multifractional Brownian motion; long range dependence; harmonizable representation; Hurst parameter; Holder continuity; FRACTIONAL STABLE MOTION;
D O I
10.3390/fractalfract6020074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, some properties of multifractional Brownian motion (MFBM) are discussed. It is shown that it has persistence of signs long range dependence (LRD) and persistence of magnitudes LRD properties. A generalization called here nth order multifractional Brownian motion (n-MFBM) that allows to take the functional parameter <mml:semantics>H(t)</mml:semantics> values in the range <mml:semantics>(n-1,n)</mml:semantics> is discussed. Two representations of the n-MFBM are given and their relationship with each other is obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type
    Lim, SC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07): : 1301 - 1310
  • [12] Local asymptotic properties of multifractional Brownian motion
    Lim, SC
    Muniandy, SV
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 205 - 214
  • [13] A Process Very Similar to Multifractional Brownian Motion
    Ayache, Antoine
    Bertrand, Pierre R.
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 311 - +
  • [14] Multifractional Brownian motion in vehicle crash tests
    Keller, Diana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 437 - 447
  • [15] On the non-commutative multifractional Brownian motion
    Dozzi, Marco
    Schott, Rene
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2022, 25 (04)
  • [16] OCCUPATION TIME PROBLEM FOR MULTIFRACTIONAL BROWNIAN MOTION
    Ouahra, Mohamed Ait
    Guerbaz, Raby
    Ouahhabi, Hanae
    Sghir, Aissa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2019, 39 (01): : 99 - 113
  • [17] How big are the increments of a multifractional Brownian motion?
    林正炎
    Science China Mathematics, 2002, (10) : 1291 - 1300
  • [18] The Generalized Multifractional Field: A nice tool for the study of the generalized Multifractional Brownian Motion
    Ayache, A
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2002, 8 (06) : 581 - 601
  • [19] The Generalized Multifractional Field: A Nice Tool for the Study of the Generalized Multifractional Brownian Motion
    Antoine Ayache
    Journal of Fourier Analysis and Applications, 2002, 8 : 581 - 602
  • [20] Estimation of the global regularity of a multifractional Brownian motion
    Lebovits, Joachim
    Podolskij, Mark
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 78 - 98