In medicine, diagnosis is as important as treatment. Retinal blood vessels are the most easily visible vessels in the whole body, and therefore, play a key role in the diagnosis of numerous diseases and eye disorders. Systematic and eye diseases cause morphologic variations, such as the growing, narrowing or branching of retinal blood vessels. Imaging-based screening of retinal blood vessels plays an important role in the identification and follow-up of eye diseases. Therefore, automatic retinal vessel segmentation can be used to diagnose and monitor those diseases. Computer-aided algorithms are required for the analysis of progression of eye diseases. This study proposes a hybrid method that provides a combination of pre-processing and data augmentation methods with a deep learning model. Pre-processing was used to solve the irregular clarification problems and to form a contrast between the background and retinal blood vessels. After pre-processing step, a convolutional neural network (CNN) was designed and then trained for the extraction of retinal blood vessels. In the training phase, data augmentation was performed to improve training performance. The CNN was trained and tested in the DRIVE database, which is commonly used in retinal blood vessel segmentation and publicly available for studies in this area. Results showed that the proposed system extracted vessels with a sensitivity of 77.78%, specificity of 97,84%, precision of 84.17% and accuracy of 95.27%.