Soliton solution of nonlinear Schrödinger equation with higher order dispersion terms

被引:0
|
作者
Pan Z. [1 ,2 ]
Zheng K. [1 ,2 ]
机构
[1] Department of Applied Mathematics, Zhejiang University, Hangzhou
[2] Post-Telecommunication Institute of Zhejiang Province, Hangzhou
关键词
Higher order dispersion term; Nonlinear Schrödinger equation; Optical soiiton communication;
D O I
10.1007/s11766-997-0016-9
中图分类号
学科分类号
摘要
It is shown in this paper that if parameters β1, β2 and β3 of a nonlinear Schrödinger equation with higher order dispersion terms (HNLS) satisfy the condition: 6β1, — β2 — 2β3(1 - 6β1k) = 0, k a real constant, then the fundamental soliton solutions of the HNLS equation exist. The exact soliton solutions are given and the relation between this condition and the known results in the literature is also discussed. © 2001, Appl. Math.-JCU. All rights reserved.
引用
收藏
页码:151 / 154
页数:3
相关论文
共 50 条
  • [31] Finite difference scheme for a higher order nonlinear Schrödinger equation
    Marcelo M. Cavalcanti
    Wellington J. Corrêa
    Mauricio A. Sepúlveda C.
    Rodrigo Véjar-Asem
    [J]. Calcolo, 2019, 56
  • [32] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    [J]. The European Physical Journal Plus, 131
  • [33] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    [J]. Communications in Mathematical Physics, 2018, 363 : 1003 - 1049
  • [34] Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
    R. N. Garifullin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 59 - 63
  • [35] Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index
    Ozisik, Muslum
    Secer, Aydin
    Bayram, Mustafa
    Cinar, Melih
    Ozdemir, Neslihan
    Esen, Handenur
    Onder, Ismail
    [J]. Optik, 2023, 274
  • [36] Topological Solitons of the Nonlinear Schrödinger’s Equation with Fourth Order Dispersion
    Anjan Biswas
    Daniela Milovic
    [J]. International Journal of Theoretical Physics, 2009, 48
  • [37] Doubly Periodic Solution for Nonlinear Schrödinger’s Equation With Higher Order Polynomial Law Nonlinearity
    Daniela Milovic
    Anjan Biswas
    [J]. International Journal of Theoretical Physics, 2008, 47 : 3335 - 3340
  • [38] Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation
    Xiaoyan Liu
    Wenjun Liu
    Houria Triki
    Qin Zhou
    Anjan Biswas
    [J]. Nonlinear Dynamics, 2019, 96 : 801 - 809
  • [39] Some optical soliton solution with bifurcation analysis of the paraxial nonlinear Schrödinger equation
    Islam, S. M. Rayhanul
    Arafat, S. M. Yaisir
    Alotaibi, Hammad
    Inc, Mustafa
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [40] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrdinger Equation
    王晓丽
    张卫国
    翟保国
    张海强
    [J]. Communications in Theoretical Physics, 2012, 58 (10) : 531 - 538