Stringy instanton counting and topological strings

被引:0
|
作者
Masahide Manabe
机构
[1] University of Warsaw,Faculty of Physics
关键词
Topological Strings; Supersymmetric gauge theory; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stringy instanton partition function of four dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} U(N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on ℂ2×T*ℙ1×ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {T}^{*}{\mathrm{\mathbb{P}}}^1\times \mathrm{\mathbb{C}} $$\end{document}, the stringy U(N) instantons of charge k are described by k D1-branes wrapping around the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} bound to N D5-branes on ℂ2×ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {\mathrm{\mathbb{P}}}^1 $$\end{document}. The KK corrections induced by compactification of the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.
引用
收藏
相关论文
共 50 条
  • [41] Instanton counting and O-vertex
    Satoshi Nawata
    Rui-Dong Zhu
    Journal of High Energy Physics, 2021
  • [42] The scattering amplitude of stringy hadrons: strings with opposite charges on their endpoints
    Jacob Sonnenschein
    Dorin Weissman
    Shimon Yankielowicz
    Journal of High Energy Physics, 2020
  • [43] Heterotic strings in two dimensions and new stringy phase transitions
    Davis, JL
    Larsen, F
    Seiberg, N
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (08):
  • [44] INSTANTON MODULI AND TOPOLOGICAL SOLITON DYNAMICS
    SUTCLIFFE, PM
    NUCLEAR PHYSICS B, 1994, 431 (1-2) : 97 - 118
  • [45] Hypermultiplets and topological strings
    Rocek, M
    Vafa, C
    Vandoren, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02): : 062
  • [46] Stringy gravity, interacting tensionless strings and massless higher spins
    Sundborg, B
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 113 - 119
  • [47] The scattering amplitude of stringy hadrons: strings with opposite charges on their endpoints
    Sonnenschein, Jacob
    Weissman, Dorin
    Yankielowicz, Shimon
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
  • [48] Resurgence and topological strings
    Vonk, M.
    STRING-MATH 2014, 2016, 93 : 221 - 232
  • [49] Topological charge of noncommutative ADHM instanton
    Tian, Y
    Zhu, CJ
    Song, XC
    MODERN PHYSICS LETTERS A, 2003, 18 (24) : 1691 - 1703
  • [50] Topological effects of instanton due to defects
    Jia, DJ
    Duan, YS
    MODERN PHYSICS LETTERS A, 2001, 16 (29) : 1863 - 1869