Stringy instanton counting and topological strings

被引:0
|
作者
Masahide Manabe
机构
[1] University of Warsaw,Faculty of Physics
关键词
Topological Strings; Supersymmetric gauge theory; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stringy instanton partition function of four dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} U(N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on ℂ2×T*ℙ1×ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {T}^{*}{\mathrm{\mathbb{P}}}^1\times \mathrm{\mathbb{C}} $$\end{document}, the stringy U(N) instantons of charge k are described by k D1-branes wrapping around the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} bound to N D5-branes on ℂ2×ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {\mathrm{\mathbb{P}}}^1 $$\end{document}. The KK corrections induced by compactification of the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.
引用
收藏
相关论文
共 50 条
  • [1] Stringy instanton counting and topological strings
    Manabe, Masahide
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07):
  • [2] Refined topological vertex and instanton counting
    Taki, Masato
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):
  • [3] Instanton calculus with R-R background and topological strings
    Billo, Marco
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (5-7): : 561 - 566
  • [4] The stringy instanton partition function
    Giulio Bonelli
    Antonio Sciarappa
    Alessandro Tanzini
    Petr Vasko
    Journal of High Energy Physics, 2014
  • [5] New stringy instanton effects
    Cvetic, M.
    Richter, R.
    Weigand, T.
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 30 - 37
  • [6] The stringy instanton partition function
    Bonelli, Giulio
    Sciarappa, Antonio
    Tanzini, Alessandro
    Vasko, Petr
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [7] COSMIC STRINGS AND STRINGY MEMBRANES
    ANIK, E
    ARIK, M
    KORNFILT, J
    SAYGILI, K
    YILDIZ, A
    PHYSICS LETTERS B, 1995, 352 (3-4) : 224 - 227
  • [8] On exceptional instanton strings
    Michele Del Zotto
    Guglielmo Lockhart
    Journal of High Energy Physics, 2017
  • [9] STRINGY COSMIC STRINGS WITH HORIZONS
    GIBBONS, GW
    ORTIZ, ME
    RUIZ, FR
    PHYSICS LETTERS B, 1990, 240 (1-2) : 50 - 54
  • [10] On exceptional instanton strings
    Del Zotto, Michele
    Lockhart, Guglielmo
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):