Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings

被引:0
|
作者
Y. Kuratomi
机构
[1] Yamaguchi University,Department of Mathematics, Faculty of Science
来源
关键词
dual automorphism invariant module; pseudoprojective module; dual square free module; finite internal exchange property; (semi)perfect ring;
D O I
暂无
中图分类号
学科分类号
摘要
A module M is called dual automorphism invariant if whenever X1 and X2 are small submodules of M, then each epimorphism f : M/X1 → M/X2 lifts to an endomorphism g of M. A module M is said to be d-square free (dual square free) if whenever some factor module of M is isomorphic to N2 for a module N then N = 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module M over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g., M is a finitely generated module), M is dual automorphism invariant iff M is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.
引用
收藏
页码:490 / 496
页数:6
相关论文
共 50 条
  • [21] ON AUTOMORPHISM-INVARIANT MULTIPLICATION MODULES OVER A NONCOMMUTATIVE RING
    Thuyet, Le Van
    Quynh, Truong Cong
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 36 : 73 - 88
  • [22] TORSION THEORIES OVER SEMIPERFECT RINGS
    RUTTER, EA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A74 - &
  • [23] Automorphism-invariant modules
    Alahmadi, Abel
    Facchini, Alberto
    Nguyen Khanh Tung
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 133 : 241 - 259
  • [24] Automorphism-Invariant Modules
    Guil Asensio, Pedro A.
    Srivastava, Ashish K.
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 19 - 30
  • [25] On automorphism-invariant modules
    Truong Cong Quynh
    Kosan, M. Tamer
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [26] Automorphism-Invariant Modules
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 694 - 698
  • [27] Weakly automorphism invariant modules
    Selvaraj, C.
    Santhakumar, S.
    NEARRINGS, NEARFIELDS AND RELATED TOPICS, 2017, : 127 - 137
  • [28] DECOMPOSITIONS OF INJECTIVE MODULES OVER NON-NOETHERIAN RINGS
    HARUI, H
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (3-4): : 203 - 217
  • [29] Dieudonne theory over semiperfect rings and perfectoid rings
    Lau, Eike
    COMPOSITIO MATHEMATICA, 2018, 154 (09) : 1974 - 2004
  • [30] TORSION THEORIES OVER SEMIPERFECT RINGS
    RUTTER, EA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (02) : 389 - &