Blood-Glucose Regulation Using Fractional-Order PID Control

被引:0
|
作者
Henrique Mohallem Paiva
Wagner Souza Keller
Luísa Garcia Ribeiro da Cunha
机构
[1] UNIFESP - Universidade Federal de Sao Paulo (Federal University of Sao Paulo),
关键词
Automatic control; Fractional control; FOPID; Blood-glucose regulation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a blood-glucose regulation approach employing a fractional-order proportional-integral-derivative (FOPID) controller, whose parameters are tuned using a numerical optimization methodology. The proposed technique is tested on 100 virtual patients using the Dalla Man model, an in silico type-1 diabetic patient model from the literature. The results are favorably compared with the ones obtained with a standard PID control. In a series of simulated tests, the FOPID approach leads to better results in terms of regulating the blood glucose levels between the specified limits, at the expense of requiring a higher, yet reasonable amount of insulin injected to the patient. Simulations were run for one day, and two different diets were considered. The quality of the regulation was measured in terms of the integral of blood glucose beyond the specified limits of 70 and 180 mg/dl. The values obtained with the PID controller were 17.5±18.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17.5 \pm 18.9$$\end{document} and 13.1±16.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13.1 \pm 16.8$$\end{document} min g/dl, while the FOPID controller leads to values of 7.3±9.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.3 \pm 9.3$$\end{document} and 7.0±8.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.0 \pm 8.0$$\end{document} min g/dl, respectively. On the other hand, the FOPID increased the request amount of insulin, from 1.9±1.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.9 \pm 1.6$$\end{document} and 1.7±1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7 \pm 1.5$$\end{document} nmol/kg to 3.0±2.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.0 \pm 2.2$$\end{document} and 2.7±2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.7 \pm 2.0$$\end{document} nmol/kg (still within the expected daily range of 3–6 nmol/kg of insulin).
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [31] Fractional-order PID Controller Design using PSO and GA
    Nasir, Mohannad
    Khadraoui, Sofiane
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 192 - 197
  • [32] Implicit Generalized Predictive Control-Based Fractional-Order PID Strategy for BTTGU Regulation System
    Yongan Wen
    Rongxin Wang
    Aimin An
    Journal of Control, Automation and Electrical Systems, 2023, 34 : 1043 - 1053
  • [33] Implicit Generalized Predictive Control-Based Fractional-Order PID Strategy for BTTGU Regulation System
    Wen, Yongan
    Wang, Rongxin
    An, Aimin
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2023, 34 (05) : 1043 - 1053
  • [34] AUTOMATIC REGULATION INVIVO OF BLOOD-GLUCOSE BY EXTRACORPOREAL CONTROL
    KRUSEJARRES, JD
    SPRINGORUM, HW
    JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY, 1977, 15 (03): : 170 - 171
  • [35] DC Motor Speed Control via Fractional-Order PID Controllers
    Batiha, Iqbal M.
    Momani, Shaher
    Batyha, Radwan M.
    Jebril, Iqbal H.
    Abu Judeh, Duha
    Oudetallah, Jamal
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2024, 24 (01) : 74 - 82
  • [36] Study on the Control of Fractional-Order PID for Underwater Vehicle Attitude Angle
    Zhao Jian
    Yin Jianchuan
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 2035 - 2040
  • [37] Fractional-order PID servo control based on decoupled visual model
    Liu, Weipeng
    Bian, Gui-Bin
    Rahman, Muhammad Rameez Ur
    Zhang, Haojie
    Chen, Haiyong
    Wu, Wanqing
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (08) : 1265 - 1280
  • [38] Implementation of Fractional-Order PID Controller in an Industrial Distributed Control System
    El-Shafei, Mohamed A. K.
    El-Hawwary, Mohamed I.
    Emara, Hassan M.
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 713 - 718
  • [39] A fuzzy fractional-order control of robotic manipulators with PID error manifolds
    Jonathan Munoz-Vazquez, Aldo
    Gaxiola, Fernando
    Martinez-Reyes, Fernando
    Manzo-Martinez, Alain
    APPLIED SOFT COMPUTING, 2019, 83
  • [40] PI/PID Control Design Based on a Fractional-Order Model for the Process
    Meneses, H.
    Arrieta, O.
    Padula, F.
    Vilanova, R.
    Visioli, A.
    IFAC PAPERSONLINE, 2019, 52 (01): : 976 - 981