A new gaussian noise filter based on interval type-2 fuzzy logic systems

被引:0
|
作者
S.T. Wang
F.L. Chung
Y.Y. Li
D.W. Hu
X.S. Wu
机构
[1] Hong Kong Polytechnic University,Department of Computing
[2] Southern Yangtze University,School of Information Engineering
[3] National Defense University of Science and Technology,School of Automation
来源
Soft Computing | 2005年 / 9卷
关键词
Image-processing; Filter; Gaussian noise; Type-2 fuzzy sets; Fuzzy logic systems; Neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new selective feedback fuzzy neural network (SFNN) based on interval type-2 fuzzy logic systems is introduced by partitioning input and output spaces and based upon which a new FLS filter is further studied. The experimental results demonstrate that this new FLS filter outperforms other filters (e.g. the mean filter and the Wiener filter) in suppressing Gaussian noise and maintaining the original structure of an image.
引用
收藏
页码:398 / 406
页数:8
相关论文
共 50 条
  • [21] Interval Type-2 Fuzzy Logic Toolbox
    Castro, Juan R.
    Castillo, Oscar
    Martinez, Luis G.
    [J]. ENGINEERING LETTERS, 2007, 15 (01)
  • [22] Model-based control using interval type-2 fuzzy logic systems
    Antao, Romulo
    Mota, Alexandre
    Martins, Rui Escadas
    [J]. SOFT COMPUTING, 2018, 22 (02) : 607 - 620
  • [23] Model-based control using interval type-2 fuzzy logic systems
    Rómulo Antão
    Alexandre Mota
    Rui Escadas Martins
    [J]. Soft Computing, 2018, 22 : 607 - 620
  • [24] On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 179 - 192
  • [25] Simplified interval type-2 fuzzy logic system based on new type-reduction
    El-Nagar, A. M.
    El-Bardini, M.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (04) : 1999 - 2010
  • [26] Interval Type-2 Intuitionistic Fuzzy Logic Systems - A Comparative Evaluation
    Eyoh, Imo
    John, Robert
    De Maere, Geert
    [J]. INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 687 - 698
  • [27] HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS
    Mendez, G. M.
    Leduc, L. A.
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2006, 34 (03)
  • [28] Interval Type-2 Fuzzy Logic Controller of Heat Exchanger Systems
    Wati, Dwi Ana Ratna
    Jayanti, Putri Nurul
    [J]. PROCEEDINGS OF 2013 3RD INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2013, : 141 - 146
  • [29] Critique of "A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems"
    Mendel, Jerry M.
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 725 - 727
  • [30] Exact inversion of decomposable interval type-2 fuzzy logic systems
    Kumbasar, Tufan
    Eksin, Ibrahim
    Guzelkaya, Mujde
    Yesil, Engin
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (02) : 253 - 272