Laser-based powder bed fusion of niobium with different build-up rates

被引:0
|
作者
Tjorben Griemsmann
Arvid Abel
Christian Hoff
Jörg Hermsdorf
Markus Weinmann
Stefan Kaierle
机构
[1] Laser Zentrum Hannover e.V.,
[2] TANIOBIS GmbH,undefined
关键词
Laser-based powder bed fusion; Niobium; Mechanical properties; Design of experiments;
D O I
暂无
中图分类号
学科分类号
摘要
Niobium is an important material for high temperature applications, in space, in superconductors or in chemical process constructions. Laser-based powder bed fusion of niobium (PBF-LB/M/Nb) offers new opportunities in design, though it is still an expensive technique. The build-up rate is an important factor for economical manufacturing using PBF-LB/M/Nb. It is largely influenced by variation of process parameters, affecting the heat flow during the manufacturing process. In this work, an empirical model for PBF-LB/M/Nb is developed. Based on this model, manufacturing parameter sets using different volume build-up rates are predicted and confirmed. They enable the manufacture of parts with homogeneous and crack-free microstructure with more than 99.9% relative density. Tensile and hardness tests of specimens, which were manufactured using different parameter sets, are performed to determine the effects of the build-up rate—and thus the heat flow during manufacturing—on different mechanical properties. The ultimate tensile strength and yield strength of as-manufactured specimens reach values up to 525 MPa and 324 MPa, respectively, while the elongation at break ranges between approximately 8 and 16%. The Vickers hardness of all specimens was in the range of 149 ± 8 HV0.1. In addition, the microstructure of the manufactured samples is investigated by means of light as well as scanning electron microscopy.
引用
收藏
页码:305 / 317
页数:12
相关论文
共 50 条
  • [31] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [32] Technological Feasibility of Lattice Materials by Laser-Based Powder Bed Fusion of A357.0
    Sola, Antonella
    Defanti, Silvio
    Mantovani, Sara
    Merulla, Andrea
    Denti, Lucia
    3D PRINTING AND ADDITIVE MANUFACTURING, 2020, 7 (01) : 1 - 7
  • [33] On the probabilistic prediction for extreme geometrical defects induced by laser-based powder bed fusion
    Kousoulas, Panayiotis
    Guo, Y. B.
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2023, 41 : 124 - 134
  • [34] Advances in polishing of internal structures on parts made by laser-based powder bed fusion
    Mingyue Shen
    Fengzhou Fang
    Frontiers of Mechanical Engineering, 2023, 18
  • [35] MACHINE LEARNING ASSISTED PREDICTION OF THE MANUFACTURABILITY OF LASER-BASED POWDER BED FUSION PROCESS
    Zhang, Ying
    Dong, Guoying
    Yang, Sheng
    Zhao, Yaoyao Fiona
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1, 2020,
  • [36] Correlation analysis of feedstock flowability and temperature for laser-based powder bed fusion of polymers
    Steffen, Raphael Timothy
    Tucker, Michael Robert
    Sillani, Francesco
    Schuetz, Denis
    Bambach, Markus
    RAPID PROTOTYPING JOURNAL, 2024,
  • [37] Metal Laser-Based Powder Bed Fusion Process Development Using Optical Tomography
    Bjoerkstrand, Roy
    Akmal, Jan
    Salmi, Mika
    MATERIALS, 2024, 17 (07)
  • [38] In-situ monitoring of laser-based powder bed fusion using fringe projection
    Remani, Afaf
    Rossi, Arianna
    Pena, Fernando
    Thompson, Adam
    Dardis, John
    Jones, Nick
    Senin, Nicola
    Leach, Richard
    ADDITIVE MANUFACTURING, 2024, 90
  • [39] Advances in polishing of internal structures on parts made by laser-based powder bed fusion
    Shen, Mingyue
    Fang, Fengzhou
    FRONTIERS OF MECHANICAL ENGINEERING, 2023, 18 (01)
  • [40] Advances in polishing of internal structures on parts made by laser-based powder bed fusion
    SHEN Mingyue
    FANG Fengzhou
    Frontiers of Mechanical Engineering, 2023, 18 (01)