Strong convergence to fixed points of non-Lipschitzian mappings

被引:1
|
作者
Kim G.E. [1 ]
机构
[1] Department of Applied Mathematics, Pukyong National University, Busan
关键词
47H05; 65J15; 47J25; 47J20;
D O I
10.1007/s40065-013-0068-z
中图分类号
学科分类号
摘要
In this paper, we first show the strong convergence of the modified Moudafi iteration process when E is a real uniformly convex Banach space, S is AQT self-mapping and T is ANI self-mapping satisfying Condition (B). Next, we show the strong convergence of the modified Mann iteration process when T is ANI self-mapping satisfying Condition (A), which generalizes the result due to Kim (J. Nonlinear Convex Anal. 13(3):449–457, 2012). Finally, we show the strong convergence of the Schu iteration process when T is ANI self-mapping satisfying Condition (A), which generalizes the result due to Rhoades (J. Math. Anal. Appl. 183:118–120, 1994). [Figure not available: see fulltext.]. © 2013, The Author(s).
引用
收藏
页码:279 / 286
页数:7
相关论文
共 50 条
  • [21] Ergodic Retraction Theorem and Weak Convergence Theorem for Reversible Semigroups of Non-Lipschitzian Mappings
    Liu Chuan ZENG
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (02) : 407 - 416
  • [22] Weak and Strong Convergence for Fixed Points of Asymptotically Non-expansive Mappings
    Liu, Ze Qing
    Kang, Shin Min
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (06) : 1009 - 1018
  • [23] Weak and Strong Convergence for Fixed Points of Asymptotically Non-expansive Mappings
    Ze Qing Liu
    Shin Min Kang
    Acta Mathematica Sinica, 2004, 20 : 1009 - 1018
  • [24] Weak and Strong Convergence for Fixed Points of Asymptotically Non-expansive Mappings
    Ze Qing LIU
    Shin Min KANG
    Acta Mathematica Sinica(English Series), 2004, 20 (06) : 1009 - 1018
  • [25] Fixed point theorems for left amenable semigroups of non-Lipschitzian mappings in Banach spaces
    Huang, Qianglian
    Zhu, Lanping
    Li, Gang
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [26] On common fixed points of non-Lipschitzian semigroups in a hyperbolic metric space endowed with a graph
    Aggarwal, Gaurav
    Uddin, Izhar
    Sahin, Aynur
    JOURNAL OF ANALYSIS, 2024, 32 (04): : 2233 - 2243
  • [27] Demiclosed principle and convergence for modified three step iterative process with errors of non-Lipschitzian mappings
    Yang, Li-ping
    Xie, Xiangsheng
    Peng, Shiguo
    Hu, Gang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 972 - 984
  • [28] Strong ergodic theorem for commutative semigroup of non-Lipschitzian mappings in multi-Banach space
    Azhini, M.
    Kenari, H. M.
    Saadati, R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (04): : 657 - 672
  • [29] Random fixed points of uniformly Lipschitzian mappings
    Ramírez, PL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (01) : 23 - 34
  • [30] ON FIXED POINTS OF POINTWISE LIPSCHITZIAN TYPE MAPPINGS
    Sahu, D. R.
    Petrusel, A.
    Yao, J. C.
    FIXED POINT THEORY, 2013, 14 (01): : 171 - 184