Volume and Lattice Points of Reflexive Simplices

被引:0
|
作者
Benjamin Nill
机构
[1] Research Group Lattice Polytopes,
[2] FU Berlin,undefined
[3] Arnimallee 3,undefined
[4] 14195,undefined
来源
关键词
Lattice Point; Toric Variety; Weight System; Fano Variety; Toric Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Using new number-theoretic bounds on the denominators of unit fractions summing up to one, we show that in any dimension d ≥ 4 there is only one d-dimensional reflexive simplex having maximal volume. Moreover, only these reflexive simplices can admit an edge that has the maximal number of lattice points possible for an edge of a reflexive simplex. In general, these simplices are also expected to contain the largest number of lattice points even among all lattice polytopes with only one interior lattice point. Translated in algebro-geometric language, our main theorem yields a sharp upper bound on the anticanonical degree of d-dimensional Q-factorial Gorenstein toric Fano varieties with Picard number one, e.g., of weighted projective spaces with Gorenstein singularities.
引用
收藏
页码:301 / 320
页数:19
相关论文
共 50 条
  • [21] Self Dual Reflexive Simplices with Eulerian Polynomials
    Takayuki Hibi
    McCabe Olsen
    Akiyoshi Tsuchiya
    Graphs and Combinatorics, 2017, 33 : 1401 - 1404
  • [22] Stabbing Simplices by Points and Flats
    Bukh, Boris
    Matousek, Jiri
    Nivasch, Gabriel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (02) : 321 - 338
  • [23] Hitting Simplices with Points in ℝ3
    Abdul Basit
    Nabil H. Mustafa
    Saurabh Ray
    Sarfraz Raza
    Discrete & Computational Geometry, 2010, 44 : 637 - 644
  • [24] Stabbing Simplices by Points and Flats
    Boris Bukh
    Jiří Matoušek
    Gabriel Nivasch
    Discrete & Computational Geometry, 2010, 43 : 321 - 338
  • [25] An introduction to empty lattice simplices
    Sebo, A
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 400 - 414
  • [26] ESTIMATION OF VOLUME USING THE NUCLEATOR AND LATTICE POINTS
    Gomez-Perez, Domingo
    Gonzalez-Villa, Javier
    Pausinger, Florian
    IMAGE ANALYSIS & STEREOLOGY, 2019, 38 (02): : 141 - 150
  • [27] On maximum volume simplices in polytopes
    A. V. Akopyan
    A. A. Glazyrin
    Periodica Mathematica Hungarica, 2014, 69 : 251 - 256
  • [28] On maximum volume simplices in polytopes
    Akopyan, A. V.
    Glazyrin, A. A.
    PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (02) : 251 - 256
  • [29] Monochromatic simplices of any volume
    Dumitrescu, Adrian
    Jiang, Minghui
    DISCRETE MATHEMATICS, 2010, 310 (04) : 956 - 960
  • [30] An inequality for two simplices and two points
    He, BW
    Li, XY
    Leng, GS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (04): : 545 - 553