Homotopy analysis method for fuzzy Boussinesq equation

被引:1
|
作者
Fallahzadeh A. [1 ]
Araghi M.A.F. [1 ]
机构
[1] Department of Mathematics, Islamic Azad University, Central Tehran Branch, P.O. Box 13185.768, Tehran
关键词
Convergence; Fuzzy Boussinesq equation; Fuzzy numbers; Homotopy analysis method;
D O I
10.1007/s40096-015-0161-x
中图分类号
学科分类号
摘要
In this work, the fuzzy Boussinesq equation is considered to solve via the homotopy analysis method (HAM). For this purpose, a theorem is proved to illustrate the convergence of the proposed method. Also, two sample examples are solved by applying the HAM to verify the efficiency and importance of the method. © 2015, The Author(s).
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [1] Modified Homotopy Perturbation Method for solving Boussinesq Equation
    Salmei, H.
    Salimi, F.
    [J]. ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 828 - +
  • [2] Homotopy analysis method approximate solution for fuzzy pantograph equation
    Shather, A. H.
    Jameel, A. F.
    Anakira, N. R.
    Alomari, A. K.
    Saaban, Azizan
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 14 (03) : 286 - 300
  • [3] Approximate homotopy symmetry method: Homotopy series solutions to the sixth-order Boussinesq equation
    XiaoYu Jiao
    Yuan Gao
    SenYue Lou
    [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 1169 - 1178
  • [4] Approximate homotopy symmetry method:Homotopy series solutions to the sixth-order Boussinesq equation
    JIAO XiaoYu1
    2 Department of Physics
    3 School of Mathematics
    [J]. Science China(Physics,Mechanics & Astronomy), 2009, Mechanics & Astronomy)2009 (08) : 1169 - 1178
  • [5] Approximate homotopy symmetry method: Homotopy series solutions to the sixth-order Boussinesq equation
    Jiao XiaoYu
    Gao Yuan
    Lou SenYue
    [J]. SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (08): : 1169 - 1178
  • [6] Homotopy analysis method for the Kawahara equation
    Abbasbandy, S.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 307 - 312
  • [7] The homotopy analysis method and the Lienard equation
    Abbasbandy, S.
    Lopez, J. L.
    Lopez-Ruiz, R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 121 - 134
  • [8] Homotopy Analysis Method to Mkdv Equation
    Chen, Xiurong
    Yu, Jiaju
    [J]. 2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 1646 - 1648
  • [9] Homotopy analysis method for solving fuzzy Nonlinear Volterra integral equation of the second kind
    Hussein, Rana
    Khenissi, Moez
    [J]. Iraqi Journal for Computer Science and Mathematics, 2024, 5 (03): : 428 - 440
  • [10] Application of homotopy perturbation method and homotopy analysis method to fractional vibration equation
    Das, S.
    Gupta, P. K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (02) : 430 - 441