OPA1 and MICOS Regulate mitochondrial crista dynamics and formation

被引:0
|
作者
Chao Hu
Li Shu
Xiaoshuai Huang
Jianglong Yu
liuju Li
Longlong Gong
Meigui Yang
Zhida Wu
Zhi Gao
Yungang Zhao
Liangyi Chen
Zhiyin Song
机构
[1] Hubei Key Laboratory of Cell Homeostasis,
[2] Frontier Science Center for Immunology and Metabolism,undefined
[3] College of Life Sciences,undefined
[4] Wuhan University,undefined
[5] State Key Laboratory of Membrane Biology,undefined
[6] Beijing Key Laboratory of Cardiometabolic Molecular Medicine,undefined
[7] Institute of Molecular Medicine,undefined
[8] Peking University,undefined
[9] Tianjin Key Laboratory of Exercise Physiology and Sports Medicine,undefined
[10] Institute of Sports and Health,undefined
[11] Tianjin Sport University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mitochondrial cristae are the main site for oxidative phosphorylation, which is critical for cellular energy production. Upon different physiological or pathological stresses, mitochondrial cristae undergo remodeling to reprogram mitochondrial function. However, how mitochondrial cristae are formed, maintained, and remolded is still largely unknown due to the technical challenges of tracking mitochondrial crista dynamics in living cells. Here, using live-cell Hessian structured illumination microscopy combined with transmission electron microscopy, focused ion beam/scanning electron microscopy, and three-dimensional tomographic reconstruction, we show, in living cells, that mitochondrial cristae are highly dynamic and undergo morphological changes, including elongation, shortening, fusion, division, and detachment from the mitochondrial inner boundary membrane (IBM). In addition, we find that OPA1, Yme1L, MICOS, and Sam50, along with the newly identified crista regulator ATAD3A, control mitochondrial crista dynamics. Furthermore, we discover two new types of mitochondrial crista in dysfunctional mitochondria, “cut-through crista” and “spherical crista”, which are formed due to incomplete mitochondrial fusion and dysfunction of the MICOS complex. Interestingly, cut-through crista can convert to “lamellar crista”. Overall, we provide a direct link between mitochondrial crista formation and mitochondrial crista dynamics.
引用
收藏
相关论文
共 50 条
  • [31] Opa1 Is Required for Proper Mitochondrial Metabolism in Early Development
    Rahn, Jennifer J.
    Stackley, Krista D.
    Chan, Sherine S. L.
    [J]. PLOS ONE, 2013, 8 (03):
  • [32] Structural mechanism of mitochondrial membrane remodeling by human OPA1
    Aydin, Halil
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 210A - 210A
  • [33] MUTATIONS IN OPA1 EXPAND THE CLINICAL PHENOTYPE OF MITOCHONDRIAL DISEASE
    Chinnery, P.
    Jackson, M.
    Amati-Bonneau, P.
    Yu-Wai-Man, P.
    Gorman, G.
    Duffey, P.
    Baker, M.
    Zeviani, M.
    Horvath, R.
    Miller, J.
    [J]. JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2010, 81 (11): : E32 - E33
  • [34] Structural mechanism of mitochondrial membrane remodelling by human OPA1
    von der Malsburg, Alexander
    Sapp, Gracie M.
    Zuccaro, Kelly E.
    von Appen, Alexander
    Moss, Frank R.
    Kalia, Raghav
    Bennett, Jeremy A.
    Abriata, Luciano A.
    Dal Peraro, Matteo
    van der Laan, Martin
    Frost, Adam
    Aydin, Halil
    [J]. NATURE, 2023, 620 (7976) : 1101 - 1108
  • [35] Protective role of the mitochondrial fusion protein OPA1 in hypertension
    Robert, Pauline
    Phuc Minh Chau Nguyen
    Richard, Alexis
    Grenier, Celine
    Chevrollier, Arnaud
    Munier, Mathilde
    Grimaud, Linda
    Proux, Coralyne
    Champin, Tristan
    Lelievre, Eric
    Sarzi, Emmanuelle
    Vessieres, Emilie
    Henni, Samir
    Prunier, Delphine
    Reynier, Pascal
    Lenaers, Guys
    Fassot, Celine
    Henrion, Daniel
    Loufrani, Laurent
    [J]. FASEB JOURNAL, 2021, 35 (07):
  • [36] Investigating the proteolytic processing of mitochondrial fusion protein OPA1
    McMahon, Kate
    Griggs, Chloe
    Fishovitz, Jennifer
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [37] OPA1 helical structures give perspective to mitochondrial dysfunction
    Sarah B. Nyenhuis
    Xufeng Wu
    Marie-Paule Strub
    Yang-In Yim
    Abigail E. Stanton
    Valentina Baena
    Zulfeqhar A. Syed
    Bertram Canagarajah
    John A. Hammer
    Jenny E. Hinshaw
    [J]. Nature, 2023, 620 : 1109 - 1116
  • [38] Structural mechanism of mitochondrial membrane remodelling by human OPA1
    Alexander von der Malsburg
    Gracie M. Sapp
    Kelly E. Zuccaro
    Alexander von Appen
    Frank R. Moss
    Raghav Kalia
    Jeremy A. Bennett
    Luciano A. Abriata
    Matteo Dal Peraro
    Martin van der Laan
    Adam Frost
    Halil Aydin
    [J]. Nature, 2023, 620 : 1101 - 1108
  • [39] Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
    Ishihara, Naotada
    Fujita, Yuu
    Oka, Toshihiko
    Mihara, Katsuyoshi
    [J]. EMBO JOURNAL, 2006, 25 (13): : 2966 - 2977
  • [40] MARF and Opa1 Control Mitochondrial and Cardiac Function in Drosophila
    Dorn, Gerald W., II
    Clark, Charles F.
    Eschenbacher, William H.
    Kang, Min-Young
    Engelhard, John T.
    Warner, Stephen J.
    Matkovich, Scot J.
    Jowdy, Casey C.
    [J]. CIRCULATION RESEARCH, 2011, 108 (01) : 12 - U34