Flood forecasting using a hybrid extreme learning machine-particle swarm optimization algorithm (ELM-PSO) model

被引:0
|
作者
Sagnik Anupam
Padmini Pani
机构
[1] DPS RK Puram,Centre for the Study of Regional Development
[2] Jawaharlal Nehru University,undefined
关键词
Flood forecasting; Machine learning; Optimization; Extreme learning machine; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Flood forecasting in India is carried out by the determination of the water level at flood-forecasting stations. The level forecasts are issued once water levels in a station reach a predefined warning level, which helps local authorities to determine response measures to the floods. A new approach has been explored in this paper, which involves using the mean daily gauge heights, mean daily rainfall, and the mean daily river discharge values of prior days to forecast the mean gauge heights up to 4 days in advance. These features were used as input for an extreme learning machine (ELM) regression model. The number of units in the ELM was optimized to obtain the maximum coefficient of determination using the particle swarm optimization algorithm (PSO) to create a hybrid ELM-PSO model. Gauge, rainfall, and discharge data of 4 decades from the Jenapur flood-forecasting station (Brahmani river, Odisha) and the Anandpur station (Baitarani river, Odisha) were used to create models for mean gauge height prediction. These models were then cross-validated using tenfold cross-validation, with mean-squared error (MSE) and the coefficient of determination (R-squared) as parameters for evaluation of the models. The models show promising results, with the 1-day-in-advance model having MSE 0.14 and R-squared 0.85 for Jenapur and MSE 0.23 and R-squared 0.75 for Anandpur.
引用
收藏
页码:341 / 347
页数:6
相关论文
共 50 条
  • [31] Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm
    Ehteram, Mohammad
    Othman, Faridah Binti
    Yaseen, Zaher Mundher
    Afan, Haitham Abdulmohsin
    Allawi, Mohammed Falah
    Malek, Marlinda Bt. Abdul
    Ahmed, Ali Najah
    Shahid, Shamsuddin
    Singh, Vijay P.
    El-Shafie, Ahmed
    WATER, 2018, 10 (06)
  • [32] Groundwater contamination source identification based on a hybrid particle swarm optimization-extreme learning machine
    Li, Jiuhui
    Lu, Wenxi
    Wang, Han
    Fan, Yue
    Chang, Zhenbo
    JOURNAL OF HYDROLOGY, 2020, 584 (584)
  • [33] A wavelet - Particle swarm optimization - Extreme learning machine hybrid modeling for significant wave height prediction
    Kaloop, Mosbeh R.
    Kumar, Deepak
    Zarzoura, Fawzi
    Roy, Bishwajit
    Hu, Jong Wan
    OCEAN ENGINEERING, 2020, 213
  • [34] Hybrid particle swarm optimization and semi-supervised extreme learning machine for cellular network localization
    Liu, Fagui
    Qin, Hengrui
    Yang, Xin
    Yu, Yi
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (06): : 1 - 12
  • [35] Integrating the Particle Swarm Optimization (PSO) with machine learning methods for improving the accuracy of the landslide susceptibility model
    Sunil Saha
    Anik Saha
    Bishnu Roy
    Raju Sarkar
    Dhruv Bhardwaj
    Barnali Kundu
    Earth Science Informatics, 2022, 15 : 2637 - 2662
  • [36] Hybrid kernel extreme learning machine for evaluation of athletes' competitive ability based on particle swarm optimization
    Zhao Yanpeng
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 73 : 23 - 31
  • [37] A hybrid detection model for acute lymphocytic leukemia using support vector machine and particle swarm optimization (SVM-PSO)
    Alsaykhan, Lama K.
    Maashi, Mashael S.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] Deformation Prediction of Concrete Dam Based on Improved Particle Swarm Optimization Algorithm and Extreme Learning Machine
    Li M.
    Wang J.
    Wang Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2019, 52 (11): : 1136 - 1144
  • [39] Gearbox fault diagnosis through quantum particle swarm optimization algorithm and kernel extreme learning machine
    Meng, Shuo
    Kang, Jianshe
    Chi, Kuo
    Die, Xupeng
    JOURNAL OF VIBROENGINEERING, 2020, 22 (06) : 1399 - 1414
  • [40] Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization
    Adnan, Rana Muhammad
    Mostafa, Reham R.
    Kisi, Ozgur
    Yaseen, Zaher Mundher
    Shahid, Shamsuddin
    Zounemat-Kermani, Mohammad
    KNOWLEDGE-BASED SYSTEMS, 2021, 230