Irreducible Representations of the Terwilliger Algebra of a Tree
被引:0
|
作者:
Jing Xu
论文数: 0引用数: 0
h-index: 0
机构:Anhui University,School of Mathematical Sciences
Jing Xu
Tatsuro Ito
论文数: 0引用数: 0
h-index: 0
机构:Anhui University,School of Mathematical Sciences
Tatsuro Ito
Shuang-Dong Li
论文数: 0引用数: 0
h-index: 0
机构:Anhui University,School of Mathematical Sciences
Shuang-Dong Li
机构:
[1] Anhui University,School of Mathematical Sciences
[2] Anhui University,Jianghuai College
来源:
Graphs and Combinatorics
|
2021年
/
37卷
关键词:
Terwilliger algebra;
Tree;
05E10;
05E30;
20C08;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} be a finite tree. Fix a base vertex x0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_0$$\end{document} of Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} and let T=T(x0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T=T^{(x_0)}$$\end{document} be the Terwilliger algebra of Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} with respect to x0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_0$$\end{document}. Denote by H the group of automorphisms of Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} that fix x0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_0$$\end{document}, and let S=EndH(V)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S={\mathrm{End}}_H~(V)$$\end{document} be the centralizer algebra of H, where V=CX\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V={\mathbb {C}}X$$\end{document} is the standard module of T with X the underlying vertex set of Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document}. It is obvious that T is contained in S. We show how large the gap is between T and S by comparing irreducible representations of them; in particular we find precisely when T=S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T=S$$\end{document} holds.
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230201, Anhui, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
Tan, Ying-Ying
Fan, Yi-Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
Fan, Yi-Zheng
Ito, Tatsuro
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
Ito, Tatsuro
Liang, Xiaoye
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Lv, Benjian
Maldonado, Carolina
论文数: 0引用数: 0
h-index: 0
机构:
FCEFyN Univ Nacl Cordoba, CIEM CONICET, Cordoba, ArgentinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Maldonado, Carolina
Wang, Kaishun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
机构:
Univ Porto, Fac Ciencias, CMUP, Rua Campo Alegre 687, P-4169007 Oporto, PortugalUniv Porto, Fac Ciencias, CMUP, Rua Campo Alegre 687, P-4169007 Oporto, Portugal
Lopes, Samuel A.
Lourenco, Joao N. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Oporto, PortugalUniv Porto, Fac Ciencias, CMUP, Rua Campo Alegre 687, P-4169007 Oporto, Portugal