Convergent star products on cotangent bundles of Lie groups

被引:0
|
作者
Michael Heins
Oliver Roth
Stefan Waldmann
机构
[1] Julius Maximilian University of Würzburg,Institute of Mathematics
来源
Mathematische Annalen | 2023年 / 386卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document} thanks to its homogeneity. We define a nuclear Fréchet algebra of certain analytic functions on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document}, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}. This nuclear Fréchet algebra is realized as the completed (projective) tensor product of a nuclear Fréchet algebra of entire functions on G with an appropriate nuclear Fréchet algebra of functions on g∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^*$$\end{document}. The passage to the Weyl-ordered star product, i.e. the Gutt star product on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document}, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}.
引用
收藏
页码:151 / 206
页数:55
相关论文
共 50 条