Convergent star products on cotangent bundles of Lie groups

被引:0
|
作者
Michael Heins
Oliver Roth
Stefan Waldmann
机构
[1] Julius Maximilian University of Würzburg,Institute of Mathematics
来源
Mathematische Annalen | 2023年 / 386卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document} thanks to its homogeneity. We define a nuclear Fréchet algebra of certain analytic functions on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document}, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}. This nuclear Fréchet algebra is realized as the completed (projective) tensor product of a nuclear Fréchet algebra of entire functions on G with an appropriate nuclear Fréchet algebra of functions on g∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}^*$$\end{document}. The passage to the Weyl-ordered star product, i.e. the Gutt star product on T∗G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*G$$\end{document}, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}.
引用
收藏
页码:151 / 206
页数:55
相关论文
共 50 条
  • [1] Convergent star products on cotangent bundles of Lie groups
    Heins, Michael
    Roth, Oliver
    Waldmann, Stefan
    MATHEMATISCHE ANNALEN, 2023, 386 (1-2) : 151 - 206
  • [2] STAR-PRODUCTS ON COTANGENT BUNDLES
    DEWILDE, M
    LECOMTE, PBA
    LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (03) : 235 - 241
  • [3] Modified Symplectic Structures in Cotangent Bundles of Lie Groups
    Vanhecke, F. J.
    Sigaud, C.
    da Silva, A. R.
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (01) : 18 - 24
  • [4] Phase space reduction of star products on cotangent bundles
    Kowalzig, N
    Neumaier, N
    Pflaum, M
    ANNALES HENRI POINCARE, 2005, 6 (03): : 485 - 552
  • [5] Phase Space Reduction of Star Products on Cotangent Bundles
    Niels Kowalzig
    Nikolai Neumaier
    Markus J. Pflaum
    Annales Henri Poincaré, 2005, 6 : 485 - 552
  • [6] Cotangent bundles of 4-dimensional hypercomplex Lie groups
    Anna Fino
    manuscripta mathematica, 2002, 109 : 527 - 541
  • [7] Cotangent bundles of 4-dimensional hypercomplex Lie groups
    Fino, A
    MANUSCRIPTA MATHEMATICA, 2002, 109 (04) : 527 - 541
  • [8] Quantization commutes with singular reduction: Cotangent bundles of compact Lie groups
    Boeijink, Jord
    Landsman, Klaas
    van Suijlekom, Walter
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (06)
  • [9] Hermitian structures on cotangent bundles of four dimensional solvable lie groups
    De Andres, Luis C.
    Barberis, M. Laura
    Dotti, Isabel
    Fernandez, Marisa
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (04) : 765 - 793
  • [10] Kontsevich star products on the cotangent bundle of a Lie group and integral formulae
    Tounsi, K
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 783 - 786