共 50 条
Nowhere-zero 3-flows in Cayley graphs and Sylow 2-subgroups
被引:0
|作者:
Mária Nánásiová
Martin Škoviera
机构:
[1] Comenius University,Department of Computer Science, Faculty of Mathematics, Physics and Informatics
来源:
关键词:
Nowhere-zero flow;
Cayley graph;
Group centre;
Sylow subgroup;
Nilpotent group;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Tutte’s 3-Flow Conjecture suggests that every bridgeless graph with no 3-edge-cut can have its edges directed and labelled by the numbers 1 or 2 in such a way that at each vertex the sum of incoming values equals the sum of outgoing values. In this paper we show that Tutte’s 3-Flow Conjecture is true for Cayley graphs of groups whose Sylow 2-subgroup is a direct factor of the group; in particular, it is true for Cayley graphs of nilpotent groups. This improves a recent result of Potočnik et al. (Discrete Math. 297:119–127, 2005) concerning nowhere-zero 3-flows in abelian Cayley graphs.
引用
收藏
页码:103 / 111
页数:8
相关论文