On the oscillation of fourth-order delay differential equations

被引:0
|
作者
Said R. Grace
Jozef Džurina
Irena Jadlovská
Tongxing Li
机构
[1] Cairo University,Department of Engineering Mathematics, Faculty of Engineering
[2] Technical University of Košice,Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics
[3] Shandong University,School of Control Science and Engineering
关键词
Linear differential equation; Delay; Fourth-order; Noncanonical operator; Oscillation; 34C10; 34K11;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, fourth-order delay differential equations of the form (r3(r2(r1y′)′)′)′(t)+q(t)y(τ(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3} \bigl(r_{2} \bigl(r_{1}y' \bigr)' \bigr)' \bigr)'(t) + q(t) y \bigl( \tau (t) \bigr) = 0 $$\end{document} under the assumption ∫t0∞dtri(t)<∞,i=1,2,3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{t_{0}}^{\infty }\frac{\mathrm {d}t}{r_{i}(t)} < \infty , \quad i = 1,2,3, $$\end{document} are investigated. Our newly proposed approach allows us to greatly reduce a number of conditions ensuring that all solutions of the studied equation oscillate. An example is also presented to test the strength and applicability of the results obtained.
引用
收藏
相关论文
共 50 条
  • [31] Oscillation Criteria of Solutions of Fourth-Order Neutral Differential Equations
    Almutairi, Alanoud
    Bazighifan, Omar
    Almarri, Barakah
    Aiyashi, M. A.
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [32] Oscillation theorems for fourth-order quasilinear ordinary differential equations
    Kamo, KI
    Usami, H
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2002, 39 (3-4) : 385 - 406
  • [33] Oscillation criteria for fourth-order differential equations with middle term
    Ben Amara, Jamel
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 42 - 46
  • [34] Oscillation of fourth-order neutral differential equations with damping term
    Bartusek, Miroslav
    Dosla, Zuzana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14341 - 14355
  • [35] OSCILLATION OF FOURTH-ORDER DYNAMIC EQUATIONS
    Grace, Said R.
    Bohner, Martin
    Sun, Shurong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 545 - 553
  • [36] OSCILLATION THEOREMS FOR FOURTH-ORDER DELAY DYNAMIC EQUATIONS ON TIME SCALES
    Li, Tongxing
    Thandapani, Ethiraju
    Tang, Shuhong
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (03): : 190 - 199
  • [37] Oscillatory Behavior of Fourth-Order Differential Equations with Neutral Delay
    Moaaz, Osama
    El-Nabulsi, Rami Ahmad
    Bazighifan, Omar
    SYMMETRY-BASEL, 2020, 12 (03):
  • [38] On stability of solutions of certain fourth-order delay differential equations
    Tunc, Cemil
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (08) : 1141 - 1148
  • [39] Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations
    Cesarano, Clemente
    Pinelas, Sandra
    Al-Showaikh, Faisal
    Bazighifan, Omar
    SYMMETRY-BASEL, 2019, 11 (05):
  • [40] STABILITY OF SOLUTIONS TO CERTAIN FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS
    Huiyan Kang (School of Math. and Physics
    Annals of Applied Mathematics, 2010, (04) : 407 - 413