Fourier-integral-operator product representation of solutions to first-order symmetrizable hyperbolic systems

被引:0
|
作者
Jérôme Le Rousseau
机构
[1] Universités d’Aix-Marseille Université de Provence,Laboratoire d’Analyse, Topologie Probabilités CNRS UMR 6632
[2] Université d’Orléans Fédération Denis Poisson,Laboratoire Mathématiques et Applications Physique Mathématique d’Orléans CNRS UMR 6628
[3] FR CNRS 2964,undefined
来源
关键词
Cauchy Problem; Phase Function; Hyperbolic System; Pseudodifferential Operator; Scalar Case;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the first-order Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered} $$\end{document} with Z > 0 and a(z, x,Dx) a k × k matrix of pseudodifferential operators of order one, whose principal part a1 is assumed symmetrizable: there exists L(z, x, ξ) of order 0, invertible, such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a_1 (z,x,\xi ) = L(z,x,\xi )( - i\beta _1 (z,x,\xi ) + \gamma _1 (z,x,\xi ))(L(z,x,\xi ))^{ - 1} , $$\end{document} where β1 and γ1 are hermitian symmetric and γ1 ≥ 0. An approximation Ansatz for the operator solution, U(z′, z), is constructed as the composition of global Fourier integral operators with complex matrix phases. In the symmetric case, an estimate of the Sobolev operator norm in L((H(s)(Rn))k, (H(s)(Rn))k) of these operators is provided, which yields a convergence result for the Ansatz to U(z′, z) in some Sobolev space as the number of operators in the composition goes to ∞, in both the symmetric and symmetrizable cases. We thus obtain a representation of the solution operator U(z′, z) as an infinite product of Fourier integral operators with matrix phases.
引用
收藏
页码:81 / 162
页数:81
相关论文
共 50 条
  • [31] ON BOUNDARY CONDITIONS FOR FIRST-ORDER SYMMETRIC HYPERBOLIC SYSTEMS WITH CONSTRAINTS
    Tarfulea, Nicolae
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (04) : 725 - 734
  • [32] On the statement of characteristic problems for symmetric first-order hyperbolic systems
    S. S. Kharibegashvili
    Differential Equations, 2000, 36 : 1233 - 1243
  • [33] SECOND-ORDER DIFFERENCE SCHEME FOR QUASILINEAR HYPERBOLIC FIRST-ORDER SYSTEMS
    ABRASHIN, VN
    DOKLADY AKADEMII NAUK BELARUSI, 1972, 16 (01): : 8 - &
  • [34] Weak vs. D-solutions to linear hyperbolic first-order systems with constant coefficients
    Katzourakis, Nikon
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (02) : 329 - 347
  • [35] BOUNDARY-VALUE PROBLEM FOR HYPERBOLIC OPERATOR DECOMPOSING INTO FIRST-ORDER LINEAR FACTORS
    PTASHNIK, BI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (NOV): : 985 - 989
  • [36] Existence and uniqueness of solutions for first-order discrete systems
    Mokhtar, Mazura
    Mohamed, Mesliza
    Ismail, Noor Halimatus Sa'diah
    Abd Nassir, Asyura
    Nor, Amirah Hana Mohamed
    Abidin, Syazwani Zainal
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, : 237 - 245
  • [37] The Hardy space of solutions to first-order elliptic systems
    Soldatov, A. P.
    DOKLADY MATHEMATICS, 2007, 76 (02) : 660 - 664
  • [38] Multimode Solutions of First-Order Elliptic Quasilinear Systems
    Grundland, A. M.
    Lamothe, V.
    ACTA APPLICANDAE MATHEMATICAE, 2015, 138 (01) : 81 - 113
  • [39] Positive periodic solutions of first-order singular systems
    Chen, Ruipeng
    Ma, Ruyun
    He, Zhiqian
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11421 - 11428
  • [40] The Hardy space of solutions to first-order elliptic systems
    A. P. Soldatov
    Doklady Mathematics, 2007, 76 : 660 - 664